You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/pool_cudnn_op.cu.cc

191 lines
7.2 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
7 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/pool_op.h"
#include "paddle/fluid/platform/cudnn_helper.h"
7 years ago
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using DataLayout = platform::DataLayout;
using PoolingMode = platform::PoolingMode;
7 years ago
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
7 years ago
template <typename T>
class PoolCUDNNOpKernel : public framework::OpKernel<T> {
7 years ago
public:
void Compute(const framework::ExecutionContext &ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use CUDAPlace.");
7 years ago
const Tensor *input = ctx.Input<Tensor>("X");
Tensor *output = ctx.Output<Tensor>("Out");
const T *input_data = input->data<T>();
T *output_data = output->mutable_data<T>(ctx.GetPlace());
7 years ago
std::string pooling_type = ctx.Attr<std::string>("pooling_type");
bool exclusive = ctx.Attr<bool>("exclusive");
7 years ago
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
7 years ago
if (ctx.Attr<bool>("global_pooling")) {
7 years ago
for (size_t i = 0; i < ksize.size(); ++i) {
7 years ago
paddings[i] = 0;
7 years ago
ksize[i] = static_cast<int>(input->dims()[i + 2]);
}
}
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor input_desc;
ScopedTensorDescriptor output_desc;
ScopedPoolingDescriptor pool_desc;
7 years ago
DataLayout layout;
if (strides.size() == 2U) {
layout = DataLayout::kNCHW;
} else {
layout = DataLayout::kNCDHW;
}
7 years ago
7 years ago
cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
layout, framework::vectorize2int(input->dims()));
cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
layout, framework::vectorize2int(output->dims()));
7 years ago
PoolingMode pooling_mode;
if (pooling_type == "max") {
pooling_mode = PoolingMode::kMaximum;
} else {
pooling_mode = exclusive ? PoolingMode::kAverageExclusive
: PoolingMode::kAverageInclusive;
7 years ago
}
cudnnPoolingDescriptor_t cudnn_pool_desc =
pool_desc.descriptor(pooling_mode, ksize, paddings, strides);
// ------------------- cudnn pool algorithm ---------------------
auto handle = ctx.cuda_device_context().cudnn_handle();
7 years ago
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
CUDNN_ENFORCE(platform::dynload::cudnnPoolingForward(
7 years ago
handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
cudnn_output_desc, output_data));
}
};
template <typename T>
class PoolCUDNNGradOpKernel : public framework::OpKernel<T> {
7 years ago
public:
void Compute(const framework::ExecutionContext &ctx) const override {
PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
"It must use CUDAPlace.");
7 years ago
const Tensor *input = ctx.Input<Tensor>("X");
const Tensor *output = ctx.Input<Tensor>("Out");
const Tensor *output_grad =
ctx.Input<Tensor>(framework::GradVarName("Out"));
Tensor *input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
7 years ago
std::string pooling_type = ctx.Attr<std::string>("pooling_type");
bool exclusive = ctx.Attr<bool>("exclusive");
7 years ago
std::vector<int> ksize = ctx.Attr<std::vector<int>>("ksize");
std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
7 years ago
if (ctx.Attr<bool>("global_pooling")) {
7 years ago
for (size_t i = 0; i < ksize.size(); ++i) {
paddings[i] = 0;
7 years ago
ksize[i] = static_cast<int>(input->dims()[i + 2]);
7 years ago
}
7 years ago
}
const T *input_data = input->data<T>();
const T *output_data = output->data<T>();
const T *output_grad_data = output_grad->data<T>();
// ------------------- cudnn descriptors ---------------------
ScopedTensorDescriptor input_desc;
ScopedTensorDescriptor output_desc;
ScopedPoolingDescriptor pool_desc;
7 years ago
DataLayout layout;
if (strides.size() == 2U) {
layout = DataLayout::kNCHW;
} else {
layout = DataLayout::kNCDHW;
}
7 years ago
7 years ago
cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
layout, framework::vectorize2int(input->dims()));
cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
layout, framework::vectorize2int(output->dims()));
7 years ago
PoolingMode pooling_mode;
if (pooling_type == "max") {
if (FLAGS_cudnn_deterministic) {
pooling_mode = PoolingMode::kMaximumDeterministic;
} else {
pooling_mode = PoolingMode::kMaximum;
}
7 years ago
} else {
pooling_mode = exclusive ? PoolingMode::kAverageExclusive
: PoolingMode::kAverageInclusive;
7 years ago
}
cudnnPoolingDescriptor_t cudnn_pool_desc =
pool_desc.descriptor(pooling_mode, ksize, paddings, strides);
// ------------------- cudnn pool algorithm ---------------------
auto handle = ctx.cuda_device_context().cudnn_handle();
7 years ago
ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
7 years ago
if (input_grad) {
T *input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
7 years ago
// Because beta is zero, it is unnecessary to reset input_grad.
7 years ago
CUDNN_ENFORCE(platform::dynload::cudnnPoolingBackward(
7 years ago
handle, cudnn_pool_desc, &alpha, cudnn_output_desc, output_data,
cudnn_output_desc, output_grad_data, cudnn_input_desc, input_data,
&beta, cudnn_input_desc, input_grad_data));
7 years ago
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
7 years ago
REGISTER_OP_KERNEL(pool2d, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNOpKernel<float>,
ops::PoolCUDNNOpKernel<double>,
ops::PoolCUDNNOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool2d_grad, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNGradOpKernel<float>,
ops::PoolCUDNNGradOpKernel<double>,
ops::PoolCUDNNGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool3d, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNOpKernel<float>,
ops::PoolCUDNNOpKernel<double>,
ops::PoolCUDNNOpKernel<plat::float16>);
REGISTER_OP_KERNEL(pool3d_grad, CUDNN, plat::CUDAPlace,
ops::PoolCUDNNGradOpKernel<float>,
ops::PoolCUDNNGradOpKernel<double>);