|
|
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "paddle/fluid/operators/py_func_op.h"
|
|
|
|
#include <set>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
#include "Python.h"
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
namespace py = ::pybind11;
|
|
|
|
|
|
|
|
static std::vector<py::object> g_py_callables;
|
|
|
|
|
|
|
|
const char kForwardPythonCallableId[] = "forward_callable_id";
|
|
|
|
const char kBackwardPythonCallableId[] = "backward_callable_id";
|
|
|
|
const char kPyFuncBackwardSkipVars[] = "backward_skip_vars";
|
|
|
|
|
|
|
|
size_t AppendPythonCallableObjectAndReturnId(const py::object &py_obj) {
|
|
|
|
g_py_callables.emplace_back(py_obj);
|
|
|
|
return g_py_callables.size() - 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static py::object *GetPythonCallableObject(size_t i) {
|
|
|
|
PADDLE_ENFORCE_LT(i, g_py_callables.size(), "Invalid python callable id");
|
|
|
|
return &g_py_callables[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string PythonObjectToString(const py::object &py_callable) {
|
|
|
|
py::gil_scoped_acquire guard;
|
|
|
|
return py::str(*py_callable);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CallPythonFunc(py::object *callable,
|
|
|
|
const std::vector<framework::LoDTensor> &ins,
|
|
|
|
std::vector<framework::LoDTensor *> *out) {
|
|
|
|
py::gil_scoped_acquire guard;
|
|
|
|
py::tuple in_args(ins.size());
|
|
|
|
for (size_t i = 0; i < ins.size(); ++i) {
|
|
|
|
in_args[i] = ins[i].IsInitialized() ? py::cast(ins[i]) : py::cast(nullptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto ret = (*callable)(*in_args);
|
|
|
|
auto ret_tuple = py::cast<py::tuple>(ret);
|
|
|
|
PADDLE_ENFORCE_EQ(py::len(ret_tuple), out->size(), "Output number not match");
|
|
|
|
for (size_t i = 0; i < out->size(); ++i) {
|
|
|
|
if ((*out)[i] == nullptr) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
try {
|
|
|
|
auto *out_tensor = py::cast<framework::LoDTensor *>(ret_tuple[i]);
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(out_tensor,
|
|
|
|
"Output tensor %d should not be nullptr", i);
|
|
|
|
(*out)[i]->set_lod(out_tensor->lod());
|
|
|
|
(*out)[i]->ShareDataWith(*out_tensor);
|
|
|
|
} catch (py::cast_error &) {
|
|
|
|
PADDLE_THROW("Output %d is not LoDTensor", i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class PyFuncOpShapeInference : public framework::InferShapeBase {
|
|
|
|
public:
|
|
|
|
void operator()(framework::InferShapeContext *ctx) const override {
|
|
|
|
PADDLE_ENFORCE(!ctx->IsRuntime(),
|
|
|
|
"Infer shape cannot be called in runtime.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasInputs("X") || ctx->HasOutputs("Out"),
|
|
|
|
"Input(X) or Output(Out) must exist");
|
|
|
|
PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>(kForwardPythonCallableId), 0,
|
|
|
|
"Function id cannot be less than 0");
|
|
|
|
|
|
|
|
auto *op = boost::get<const framework::OpDesc *>(ctx->GetOp());
|
|
|
|
auto *block = op->Block();
|
|
|
|
const std::string kGradVarSuffix = framework::kGradVarSuffix;
|
|
|
|
auto out_vars = ctx->GetOutputVarPtrs("Out");
|
|
|
|
for (auto &out_var : out_vars) {
|
|
|
|
auto *out_var_desc = boost::get<framework::VarDesc *>(out_var);
|
|
|
|
if (out_var_desc == nullptr) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
auto out_name = out_var_desc->Name();
|
|
|
|
if (out_name == framework::kEmptyVarName ||
|
|
|
|
out_name.size() <= kGradVarSuffix.size()) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t len = out_name.size() - kGradVarSuffix.size();
|
|
|
|
if (out_name.substr(len) == kGradVarSuffix) {
|
|
|
|
auto fwd_var_name = out_name.substr(0, len);
|
|
|
|
auto *in_var_desc = block->FindVarRecursive(fwd_var_name);
|
|
|
|
PADDLE_ENFORCE_NOT_NULL(in_var_desc, "Forward variable %s not found",
|
|
|
|
fwd_var_name);
|
|
|
|
VLOG(10) << "Infer shape of Out(" << out_name << ") as Input("
|
|
|
|
<< in_var_desc->Name() << ")";
|
|
|
|
out_var_desc->SetShape(in_var_desc->GetShape());
|
|
|
|
out_var_desc->SetDataType(in_var_desc->GetDataType());
|
|
|
|
out_var_desc->SetLoDLevel(in_var_desc->GetLoDLevel());
|
|
|
|
out_var_desc->SetType(in_var_desc->GetType());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class PyFuncOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
public:
|
|
|
|
void Make() override {
|
|
|
|
AddInput("X", "Inputs of py_func op.").AsDuplicable();
|
|
|
|
AddOutput("Out", "Outputs of py_func op").AsDuplicable();
|
|
|
|
AddAttr<int>(kForwardPythonCallableId,
|
|
|
|
"Index of registered forward Python function.")
|
|
|
|
.SetDefault(0);
|
|
|
|
AddAttr<int>(kBackwardPythonCallableId,
|
|
|
|
"Index of registered backward Python function")
|
|
|
|
.SetDefault(-1);
|
|
|
|
AddAttr<std::vector<std::string>>(kPyFuncBackwardSkipVars,
|
|
|
|
"Unused forward in/out in backward op")
|
|
|
|
.SetDefault(std::vector<std::string>());
|
|
|
|
AddComment(R"DOC("PyFunc Op")DOC");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class PyFuncOpGradDescMaker : public framework::GradOpDescMakerBase {
|
|
|
|
public:
|
|
|
|
using framework::GradOpDescMakerBase::GradOpDescMakerBase;
|
|
|
|
|
|
|
|
std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
|
|
|
|
auto &fwd_attrs = Attrs();
|
|
|
|
// no backward op when backward_id is less than 0
|
|
|
|
if (boost::get<int>(fwd_attrs.at(kBackwardPythonCallableId)) < 0) {
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
|
|
|
std::unique_ptr<framework::OpDesc> grad_op(new framework::OpDesc());
|
|
|
|
grad_op->SetType("py_func");
|
|
|
|
|
|
|
|
framework::AttributeMap bwd_attrs;
|
|
|
|
bwd_attrs[kForwardPythonCallableId] =
|
|
|
|
fwd_attrs.at(kBackwardPythonCallableId);
|
|
|
|
bwd_attrs[kBackwardPythonCallableId] = -1;
|
|
|
|
grad_op->SetAttrMap(bwd_attrs);
|
|
|
|
|
|
|
|
// All forward inputs
|
|
|
|
auto fwd_ins = Input("X");
|
|
|
|
// All forward outputs
|
|
|
|
auto fwd_outs = Output("Out");
|
|
|
|
|
|
|
|
// For memory reused, some inputs/output in forward part may be not needed
|
|
|
|
// in backward part
|
|
|
|
// Just skip these vars
|
|
|
|
auto &backward_skip_var_list = boost::get<std::vector<std::string>>(
|
|
|
|
fwd_attrs.at(kPyFuncBackwardSkipVars));
|
|
|
|
std::unordered_set<std::string> backward_skip_var_set(
|
|
|
|
backward_skip_var_list.begin(), backward_skip_var_list.end());
|
|
|
|
std::vector<std::string> bwd_ins;
|
|
|
|
bwd_ins.reserve(fwd_ins.size() + fwd_outs.size());
|
|
|
|
for (auto &fwd_in : fwd_ins) {
|
|
|
|
if (backward_skip_var_set.count(fwd_in) == 0) {
|
|
|
|
bwd_ins.emplace_back(fwd_in);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto &fwd_out : fwd_outs) {
|
|
|
|
if (backward_skip_var_set.count(fwd_out) == 0) {
|
|
|
|
bwd_ins.emplace_back(fwd_out);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Backward OG cannot be skipped
|
|
|
|
// But in Python side, if OG is kEmptyVarName, input tensor would be None
|
|
|
|
auto fwd_out_grads = OutputGrad("Out");
|
|
|
|
bwd_ins.reserve(bwd_ins.size() + fwd_out_grads.size());
|
|
|
|
bwd_ins.insert(bwd_ins.end(), fwd_out_grads.begin(), fwd_out_grads.end());
|
|
|
|
|
|
|
|
// Backward IG cannot be skipped
|
|
|
|
// But in Python side, if IG is not needed, users can just return None
|
|
|
|
auto bwd_outs = InputGrad("X", false);
|
|
|
|
|
|
|
|
if (VLOG_IS_ON(10)) {
|
|
|
|
std::string in_str = "PyFunc Grad Input: ";
|
|
|
|
for (auto &in : bwd_ins) {
|
|
|
|
in_str += in;
|
|
|
|
in_str += " ";
|
|
|
|
}
|
|
|
|
VLOG(10) << in_str;
|
|
|
|
|
|
|
|
std::string out_str = "PyFunc Grad Output: ";
|
|
|
|
for (auto &out : bwd_outs) {
|
|
|
|
out_str += out;
|
|
|
|
out_str += " ";
|
|
|
|
}
|
|
|
|
VLOG(10) << out_str;
|
|
|
|
}
|
|
|
|
|
|
|
|
grad_op->SetInput("X", bwd_ins);
|
|
|
|
grad_op->SetOutput("Out", bwd_outs);
|
|
|
|
|
|
|
|
std::vector<std::unique_ptr<framework::OpDesc>> ret(1);
|
|
|
|
ret[0] = std::move(grad_op);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class PyFuncOp : public framework::OperatorBase {
|
|
|
|
public:
|
|
|
|
using framework::OperatorBase::OperatorBase;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void RunImpl(const framework::Scope &scope,
|
|
|
|
const platform::Place &place) const override {
|
|
|
|
auto &in_arg_names = Inputs("X");
|
|
|
|
auto &out_arg_names = Outputs("Out");
|
|
|
|
|
|
|
|
std::vector<framework::LoDTensor> inputs(in_arg_names.size());
|
|
|
|
for (size_t i = 0; i < in_arg_names.size(); ++i) {
|
|
|
|
auto in_var = scope.FindVar(in_arg_names[i]);
|
|
|
|
if (in_var == nullptr) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
auto &in_tensor = in_var->Get<framework::LoDTensor>();
|
|
|
|
if (!in_tensor.IsInitialized()) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (platform::is_gpu_place(in_tensor.place())) {
|
|
|
|
framework::TensorCopySync(in_tensor, platform::CPUPlace(), &inputs[i]);
|
|
|
|
} else {
|
|
|
|
inputs[i].ShareDataWith(in_tensor);
|
|
|
|
}
|
|
|
|
inputs[i].set_lod(in_tensor.lod());
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<framework::LoDTensor *> outputs(out_arg_names.size());
|
|
|
|
for (size_t i = 0; i < out_arg_names.size(); ++i) {
|
|
|
|
auto *out_var = scope.FindVar(out_arg_names[i]);
|
|
|
|
auto *out_tensor =
|
|
|
|
out_var ? out_var->GetMutable<framework::LoDTensor>() : nullptr;
|
|
|
|
outputs[i] = out_tensor;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto callable_id = static_cast<size_t>(Attr<int>(kForwardPythonCallableId));
|
|
|
|
auto *py_callable = GetPythonCallableObject(callable_id);
|
|
|
|
VLOG(10) << "Call py_func_op with id " << callable_id << ": "
|
|
|
|
<< PythonObjectToString(*py_callable);
|
|
|
|
CallPythonFunc(py_callable, inputs, &outputs);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
|
|
|
|
REGISTER_OPERATOR(py_func, ops::PyFuncOp, ops::PyFuncOpMaker,
|
|
|
|
ops::PyFuncOpShapeInference, ops::PyFuncOpGradDescMaker);
|