You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_preprocessor.py

67 lines
2.6 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.fluid as fluid
import paddle.v2 as paddle
import paddle.v2.dataset.mnist as mnist
class TestPreprocessor(unittest.TestCase):
def setUp(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
reader = paddle.batch(mnist.train(), batch_size=32)
feeder = fluid.DataFeeder(
feed_list=[ # order is image and label
fluid.layers.data(
name='image', shape=[784]),
fluid.layers.data(
name='label', shape=[1], dtype='int64'),
],
place=fluid.CPUPlace())
self.num_batches = fluid.recordio_writer.convert_reader_to_recordio_file(
'./mnist_for_preprocessor_test.recordio', reader, feeder)
def test_main(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data_file = fluid.layers.io.open_recordio_file(
'./mnist_for_preprocessor_test.recordio',
shapes=[[-1, 784], [-1, 1]],
lod_levels=[0, 0],
dtypes=['float32', 'int64'])
preprocessor = fluid.layers.io.Preprocessor(reader=data_file)
with preprocessor.block():
img, lbl = preprocessor.inputs()
img_out = img / 2
lbl_out = lbl + 1
preprocessor.outputs(img_out, lbl_out)
img_before, lbl_before = fluid.layers.io.read_file(data_file)
img_after, lbl_after = fluid.layers.io.read_file(preprocessor())
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
else:
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for _ in range(5):
img_b, lbl_b, img_a, lbl_a = exe.run(
fetch_list=[img_before, lbl_before, img_after, lbl_after])
self.assertEqual(img_b / 2, img_a)
self.assertEqual(lbl_b + 1, lbl_a)