|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "paddle/framework/executor.h"
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
#include "paddle/framework/threadpool.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
static constexpr char kInputs[] = "inputs";
|
|
|
|
static constexpr char kParameters[] = "parameters";
|
|
|
|
static constexpr char kPlaces[] = "places";
|
|
|
|
|
|
|
|
static constexpr char kOutputs[] = "outputs";
|
|
|
|
static constexpr char kParallelScopes[] = "parallel_scopes";
|
|
|
|
|
|
|
|
static constexpr char kParallelBlock[] = "sub_block";
|
|
|
|
|
|
|
|
// using ParallelScopeVar = std::vector<framework::Scope *>;
|
|
|
|
using LoDTensor = framework::LoDTensor;
|
|
|
|
using OperatorBase = framework::OperatorBase;
|
|
|
|
|
|
|
|
void SplitTensorAndMoveTensorToScopes(
|
|
|
|
const framework::Scope &scope,
|
|
|
|
const std::vector<framework::Scope *> &sub_scopes,
|
|
|
|
const std::vector<platform::Place> &places,
|
|
|
|
const std::vector<std::string> &names) {
|
|
|
|
for (auto &argu : names) {
|
|
|
|
auto *var = scope.FindVar(argu);
|
|
|
|
const auto &tensor = var->Get<LoDTensor>();
|
|
|
|
auto lod_tensors = tensor.SplitLoDTensor(places);
|
|
|
|
|
|
|
|
for (auto &lod : lod_tensors) {
|
|
|
|
VLOG(3) << lod.dims();
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < sub_scopes.size(); ++i) {
|
|
|
|
*sub_scopes[i]->Var(argu)->GetMutable<LoDTensor>() = lod_tensors[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class ParallelDoOp : public framework::OperatorBase {
|
|
|
|
public:
|
|
|
|
ParallelDoOp(const std::string &type,
|
|
|
|
const framework::VariableNameMap &inputs,
|
|
|
|
const framework::VariableNameMap &outputs,
|
|
|
|
const framework::AttributeMap &attrs)
|
|
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
|
|
|
|
void Run(const framework::Scope &scope,
|
|
|
|
const platform::Place &place) const override {
|
|
|
|
// get device context from pool
|
|
|
|
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
|
|
|
|
auto &dev_ctx = *pool.Get(place);
|
|
|
|
|
|
|
|
auto *block = Attr<framework::BlockDesc *>(kParallelBlock);
|
|
|
|
auto *program = block->Program();
|
|
|
|
|
|
|
|
// TODO(tonyyang-svail): get places from input
|
|
|
|
std::vector<platform::Place> places;
|
|
|
|
places.emplace_back(platform::CPUPlace());
|
|
|
|
places.emplace_back(platform::CPUPlace());
|
|
|
|
|
|
|
|
auto &sub_scopes = *scope.FindVar(Output(kParallelScopes))
|
|
|
|
->GetMutable<std::vector<framework::Scope *>>();
|
|
|
|
for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) {
|
|
|
|
sub_scopes.push_back(&scope.NewScope());
|
|
|
|
}
|
|
|
|
|
|
|
|
SplitTensorAndMoveTensorToScopes(scope, sub_scopes, places,
|
|
|
|
Inputs(kInputs));
|
|
|
|
|
|
|
|
std::vector<std::future<void>> workers;
|
|
|
|
workers.reserve(places.size());
|
|
|
|
for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) {
|
|
|
|
VLOG(3) << "Run " << place_idx;
|
|
|
|
|
|
|
|
auto &place = places[place_idx];
|
|
|
|
auto *cur_scope = sub_scopes[place_idx];
|
|
|
|
|
|
|
|
// copy parameter
|
|
|
|
// some version of boost lacks != for boost::variant
|
|
|
|
if (!(dev_ctx.GetPlace() == place)) {
|
|
|
|
PADDLE_THROW("Not Implemented");
|
|
|
|
}
|
|
|
|
|
|
|
|
workers.emplace_back(framework::Async([program, cur_scope, place, block] {
|
|
|
|
framework::Executor executor(place);
|
|
|
|
executor.Run(*program, cur_scope, block->ID(),
|
|
|
|
false /*create_local_scope*/);
|
|
|
|
}));
|
|
|
|
}
|
|
|
|
for (auto &worker : workers) {
|
|
|
|
worker.wait();
|
|
|
|
}
|
|
|
|
|
|
|
|
// merge output
|
|
|
|
for (auto &o_name : Outputs(kOutputs)) {
|
|
|
|
std::vector<const framework::LoDTensor *> lod_tensors;
|
|
|
|
lod_tensors.reserve(sub_scopes.size());
|
|
|
|
for (auto *sub_scope : sub_scopes) {
|
|
|
|
lod_tensors.emplace_back(&sub_scope->FindVar(o_name)->Get<LoDTensor>());
|
|
|
|
}
|
|
|
|
|
|
|
|
auto *lod_tensor_to_be_merged =
|
|
|
|
scope.FindVar(o_name)->GetMutable<LoDTensor>();
|
|
|
|
lod_tensor_to_be_merged->MergeLoDTensor(lod_tensors, dev_ctx.GetPlace());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class ParallelDoOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
public:
|
|
|
|
ParallelDoOpProtoMaker(OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
|
|
AddInput(kInputs, "").AsDuplicable();
|
|
|
|
AddInput(kParameters, "").AsDuplicable();
|
|
|
|
AddInput(kPlaces, "");
|
|
|
|
AddOutput(kOutputs, "").AsDuplicable();
|
|
|
|
AddOutput(kParallelScopes, "");
|
|
|
|
AddAttr<framework::BlockDesc *>(kParallelBlock, "");
|
|
|
|
AddComment(R"DOC(
|
|
|
|
ParallelDo Operator.
|
|
|
|
)DOC");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class ParallelDoGradOp : public OperatorBase {
|
|
|
|
public:
|
|
|
|
ParallelDoGradOp(const std::string &type,
|
|
|
|
const framework::VariableNameMap &inputs,
|
|
|
|
const framework::VariableNameMap &outputs,
|
|
|
|
const framework::AttributeMap &attrs)
|
|
|
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
|
|
|
|
|
|
|
void Run(const framework::Scope &scope,
|
|
|
|
const platform::Place &place) const override {
|
|
|
|
// // get device context from pool
|
|
|
|
// platform::DeviceContextPool &pool =
|
|
|
|
// platform::DeviceContextPool::Instance();
|
|
|
|
// auto &dev_ctx = *pool.Get(place);
|
|
|
|
|
|
|
|
auto *block = Attr<framework::BlockDesc *>(kParallelBlock);
|
|
|
|
auto *program = block->Program();
|
|
|
|
|
|
|
|
auto &sub_scopes = scope.FindVar(Input(kParallelScopes))
|
|
|
|
->Get<std::vector<framework::Scope *>>();
|
|
|
|
|
|
|
|
// TODO(tonyyang-svail): get places from input
|
|
|
|
std::vector<platform::Place> places;
|
|
|
|
places.emplace_back(platform::CPUPlace());
|
|
|
|
places.emplace_back(platform::CPUPlace());
|
|
|
|
|
|
|
|
// feed output@grad
|
|
|
|
SplitTensorAndMoveTensorToScopes(scope, sub_scopes, places,
|
|
|
|
Inputs(framework::GradVarName(kOutputs)));
|
|
|
|
|
|
|
|
for (auto &s : Inputs(framework::GradVarName(kOutputs))) {
|
|
|
|
VLOG(3) << s;
|
|
|
|
VLOG(3) << scope.FindVar(s)->Get<LoDTensor>();
|
|
|
|
for (auto *sub_scope : sub_scopes) {
|
|
|
|
VLOG(3) << sub_scope->FindVar(s)->Get<LoDTensor>();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// exe run
|
|
|
|
std::vector<std::future<void>> workers;
|
|
|
|
for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) {
|
|
|
|
VLOG(3) << "Run " << place_idx;
|
|
|
|
|
|
|
|
auto &place = places[place_idx];
|
|
|
|
auto *cur_scope = sub_scopes[place_idx];
|
|
|
|
|
|
|
|
// execute
|
|
|
|
workers.emplace_back(framework::Async([program, cur_scope, place, block] {
|
|
|
|
framework::Executor executor(place);
|
|
|
|
executor.Run(*program, cur_scope, block->ID(),
|
|
|
|
false /*create_local_scope*/);
|
|
|
|
}));
|
|
|
|
}
|
|
|
|
for (auto &worker : workers) {
|
|
|
|
worker.wait();
|
|
|
|
}
|
|
|
|
|
|
|
|
// merge grad
|
|
|
|
for (auto &s : Outputs(framework::GradVarName(kParameters))) {
|
|
|
|
VLOG(3) << s;
|
|
|
|
|
|
|
|
auto &t = sub_scopes[0]->FindVar(s)->Get<LoDTensor>();
|
|
|
|
VLOG(3) << t;
|
|
|
|
|
|
|
|
std::string s_buf = s + "@BUF";
|
|
|
|
auto *t_buf = sub_scopes[0]->Var(s_buf)->GetMutable<LoDTensor>();
|
|
|
|
|
|
|
|
for (size_t place_idx = 1; place_idx < places.size(); ++place_idx) {
|
|
|
|
auto &tt = sub_scopes[place_idx]->FindVar(s)->Get<LoDTensor>();
|
|
|
|
VLOG(3) << place_idx;
|
|
|
|
VLOG(3) << tt;
|
|
|
|
framework::Copy(tt, places[0], t_buf);
|
|
|
|
|
|
|
|
auto sum_op = framework::OpRegistry::CreateOp(
|
|
|
|
"sum", {{"X", {s, s_buf}}}, {{"Out", {s}}},
|
|
|
|
framework::AttributeMap{});
|
|
|
|
sum_op->Run(*sub_scopes[0], place);
|
|
|
|
}
|
|
|
|
|
|
|
|
VLOG(3) << t;
|
|
|
|
framework::Copy(t, place, scope.FindVar(s)->GetMutable<LoDTensor>());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker {
|
|
|
|
public:
|
|
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
virtual std::unique_ptr<framework::OpDesc> Apply() const {
|
|
|
|
auto *grad = new framework::OpDesc();
|
|
|
|
grad->SetType("parallel_do_grad");
|
|
|
|
for (auto &input_param : this->InputNames()) {
|
|
|
|
VLOG(3) << input_param;
|
|
|
|
grad->SetInput(input_param, this->Input(input_param));
|
|
|
|
grad->SetOutput(framework::GradVarName(input_param),
|
|
|
|
this->InputGrad(input_param, false));
|
|
|
|
}
|
|
|
|
|
|
|
|
for (auto &output_param : this->OutputNames()) {
|
|
|
|
if (output_param == kParallelScopes) {
|
|
|
|
grad->SetInput(output_param, this->Output(output_param));
|
|
|
|
grad->SetInput(framework::GradVarName(output_param),
|
|
|
|
this->Output(output_param));
|
|
|
|
} else {
|
|
|
|
grad->SetInput(output_param, this->Output(output_param));
|
|
|
|
grad->SetInput(framework::GradVarName(output_param),
|
|
|
|
this->OutputGrad(output_param));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
grad->SetAttrMap(this->Attrs());
|
|
|
|
grad->SetBlockAttr(kParallelBlock, *grad_block_[0]);
|
|
|
|
|
|
|
|
return std::unique_ptr<framework::OpDesc>(grad);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class ParallelDoGradOpShapeInference : public framework::InferShapeBase {
|
|
|
|
public:
|
|
|
|
void operator()(framework::InferShapeContext *ctx) const override {
|
|
|
|
std::vector<std::string> input{kParameters, kInputs};
|
|
|
|
std::vector<std::string> output{kOutputs};
|
|
|
|
for (auto &s : input) {
|
|
|
|
PADDLE_ENFORCE(ctx->HasInputs(s));
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(s)),
|
|
|
|
"Cannot find the gradient variable %s",
|
|
|
|
framework::GradVarName(s));
|
|
|
|
}
|
|
|
|
for (auto &s : output) {
|
|
|
|
PADDLE_ENFORCE(ctx->HasInputs(s));
|
|
|
|
}
|
|
|
|
for (auto &s : input) {
|
|
|
|
ctx->SetOutputsDim(framework::GradVarName(s), ctx->GetInputsDim(s));
|
|
|
|
}
|
|
|
|
if (ctx->HasInputs(kParameters)) {
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(kParameters)));
|
|
|
|
ctx->SetOutputsDim(framework::GradVarName(kParameters),
|
|
|
|
ctx->GetInputsDim(kParameters));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
REGISTER_OPERATOR(parallel_do, paddle::operators::ParallelDoOp,
|
|
|
|
paddle::operators::ParallelDoOpProtoMaker,
|
|
|
|
paddle::operators::ParallelDoGradOpDescMaker);
|
|
|
|
REGISTER_OPERATOR(parallel_do_grad, paddle::operators::ParallelDoGradOp,
|
|
|
|
paddle::operators::ParallelDoGradOpShapeInference);
|