|
|
|
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
|
|
|
|
#include "SparseRowMatrix.h"
|
|
|
|
#include "CpuSparseMatrix.h"
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
#include <algorithm>
|
|
|
|
|
|
|
|
#include "paddle/utils/Logging.h"
|
|
|
|
|
|
|
|
#include "SIMDFunctions.h"
|
|
|
|
|
|
|
|
#include "paddle/utils/Util.h"
|
|
|
|
#include "paddle/utils/Thread.h"
|
|
|
|
|
|
|
|
P_DEFINE_bool(allow_inefficient_sparse_update, false,
|
|
|
|
"Whether to allow inefficient sparse update");
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
|
|
|
const unsigned int SparseRowCpuMatrix::kUnusedId_ = -1U;
|
|
|
|
|
|
|
|
void SparseRowCpuMatrix::init(size_t height, size_t width) {
|
|
|
|
// @TODO(yuyang18) Just remove this limit
|
|
|
|
CHECK(simd::vec_check(width)) << width;
|
|
|
|
height_ = height;
|
|
|
|
if (!indexDictHandle_) {
|
|
|
|
indexDictHandle_.reset(new IndexDict);
|
|
|
|
indexDictHandle_->globalIndices.assign(height, kUnusedId_);
|
|
|
|
}
|
|
|
|
localIndices_ = &indexDictHandle_->localIndices;
|
|
|
|
globalIndices_ = indexDictHandle_->globalIndices.data();
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparseRowCpuMatrix::mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB,
|
|
|
|
real scaleT) {
|
|
|
|
CpuMatrix::mul<CpuMatrix, SparseRowCpuMatrix>(a, b, this, scaleAB, scaleT);
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparseRowCpuMatrix::copyFrom(const real* src, size_t size) {
|
|
|
|
LOG(FATAL) << "This should not be called";
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparseRowCpuMatrix::zeroMem() {
|
|
|
|
apply(
|
|
|
|
[](real* buf, size_t len) {
|
|
|
|
memset(buf, 0, sizeof(real) * len);
|
|
|
|
});
|
|
|
|
clearRows();
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparseRowCpuMatrix::applyL1Decay(real learningRate, real decayRate) {
|
|
|
|
apply([=](real* buf, size_t len) {
|
|
|
|
CpuVector value(0, nullptr);
|
|
|
|
value.subVecFrom(buf, 0, len);
|
|
|
|
value.applyL1(learningRate, decayRate);
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparseRowCpuMatrix::sgdUpdate(BaseMatrix& value, IVector& t0,
|
|
|
|
real learningRate, int currentTime,
|
|
|
|
real decayRate, bool useL1, bool fini) {
|
|
|
|
std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
|
|
|
|
|
|
|
|
// t0 and value are vectors
|
|
|
|
CHECK_EQ(t0.getSize(), this->height_);
|
|
|
|
CHECK_EQ(value.width_, this->height_ * this->width_);
|
|
|
|
|
|
|
|
if (decayRate == 0.0f) {
|
|
|
|
if (fini) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < localIndices.size(); ++i) {
|
|
|
|
real* g = getLocalRow(i);
|
|
|
|
real* v = value.rowBuf(localIndices[i]);
|
|
|
|
for (size_t j = 0; j < this->width_; ++j) {
|
|
|
|
v[j] -= learningRate * g[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
} // else
|
|
|
|
|
|
|
|
if (useL1) { // L1 decay
|
|
|
|
if (fini) {
|
|
|
|
for (size_t i = 0; i < this->height_; ++i) {
|
|
|
|
real* v = value.rowBuf(i);
|
|
|
|
int* t = t0.getData() + i;
|
|
|
|
if (t[0] < currentTime) {
|
|
|
|
// W(t0) -> W(t+1)
|
|
|
|
int tDiff = currentTime - t[0];
|
|
|
|
real delta = tDiff * learningRate * decayRate;
|
|
|
|
simd::decayL1(v, v, delta, this->width_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
} // else
|
|
|
|
|
|
|
|
for (size_t i = 0; i < localIndices.size(); ++i) {
|
|
|
|
real* g = getLocalRow(i);
|
|
|
|
real* v = value.rowBuf(localIndices[i]);
|
|
|
|
int* t = t0.getData() + localIndices[i];
|
|
|
|
if (t[0] < currentTime) {
|
|
|
|
// W(t0) -> W(t)
|
|
|
|
int tDiff = currentTime - t[0];
|
|
|
|
real delta = tDiff * learningRate * decayRate;
|
|
|
|
simd::decayL1(v, v, delta, this->width_);
|
|
|
|
}
|
|
|
|
|
|
|
|
// W(t) -> W(t+1)
|
|
|
|
for (size_t j = 0; j < this->width_; ++j) {
|
|
|
|
v[j] -= learningRate * g[j];
|
|
|
|
}
|
|
|
|
simd::decayL1(v, v, learningRate*decayRate, this->width_);
|
|
|
|
|
|
|
|
// state update to t+1
|
|
|
|
t[0] = currentTime + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
} else { // L2 decay
|
|
|
|
if (fini) {
|
|
|
|
for (size_t i = 0; i < this->height_; ++i) {
|
|
|
|
real* v = value.rowBuf(i);
|
|
|
|
int* t = t0.getData() + i;
|
|
|
|
if (t[0] < currentTime) {
|
|
|
|
// W(t0) -> W(t+1)
|
|
|
|
int tDiff = currentTime - t[0];
|
|
|
|
real recip = 1.0f / (1.0f + tDiff * learningRate * decayRate);
|
|
|
|
for (size_t j = 0; j < this->width_; ++j) {
|
|
|
|
v[j] *= recip;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
} // else
|
|
|
|
|
|
|
|
real recipDecay = 1.0f / (1.0f + learningRate * decayRate);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < localIndices.size(); ++i) {
|
|
|
|
real* g = getLocalRow(i);
|
|
|
|
real* v = value.rowBuf(localIndices[i]);
|
|
|
|
int* t = t0.getData() + localIndices[i];
|
|
|
|
if (t[0] < currentTime) {
|
|
|
|
// W(t0) -> W(t)
|
|
|
|
int tDiff = currentTime - t[0];
|
|
|
|
real recip = 1.0f / (1.0f + tDiff * learningRate * decayRate);
|
|
|
|
for (size_t j = 0; j < this->width_; ++j) {
|
|
|
|
v[j] *= recip;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// W(t) -> W(t+1)
|
|
|
|
for (size_t j = 0; j < this->width_; ++j) {
|
|
|
|
v[j] = recipDecay * (v[j] - learningRate * g[j]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// state update to t+1
|
|
|
|
t[0] = currentTime + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparseRowCpuMatrix::addTo(BaseMatrix& dest, std::vector<uint32_t>& ids,
|
|
|
|
size_t tid, size_t numThreads) {
|
|
|
|
CHECK(!dest.useGpu_);
|
|
|
|
CHECK_EQ(dest.height_ * dest.width_, this->height_ * this->width_);
|
|
|
|
|
|
|
|
std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
|
|
|
|
for (size_t i = 0; i < localIndices.size(); ++i) {
|
|
|
|
uint32_t id = localIndices[i];
|
|
|
|
if (id % numThreads == tid) {
|
|
|
|
simd::addTo(dest.rowBuf(id), getLocalRow(i),
|
|
|
|
this->width_);
|
|
|
|
ids.push_back(id);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparseRowCpuMatrix::addTo(SparseRowCpuMatrix& dest, size_t tid,
|
|
|
|
size_t numThreads) {
|
|
|
|
CHECK(!dest.useGpu_);
|
|
|
|
CHECK_EQ(dest.height_ * dest.width_, this->height_ * this->width_);
|
|
|
|
|
|
|
|
std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
|
|
|
|
for (size_t i = 0; i < localIndices.size(); ++i) {
|
|
|
|
uint32_t id = localIndices[i];
|
|
|
|
if (id % numThreads == tid) {
|
|
|
|
dest.checkIndex(id);
|
|
|
|
simd::addTo(dest.getRow(id), getLocalRow(i), this->width_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparseRowCpuMatrix::zeroMemThread(size_t tid, size_t numThreads) {
|
|
|
|
std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
|
|
|
|
for (size_t i = 0; i < localIndices.size(); ++i) {
|
|
|
|
uint32_t id = localIndices[i];
|
|
|
|
if (id % numThreads == tid) {
|
|
|
|
memset(this->getLocalRow(i), 0, this->width_ * sizeof(real));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparseAutoGrowRowCpuMatrix::mul(CpuSparseMatrix* a, CpuMatrix* b,
|
|
|
|
real scaleAB, real scaleT) {
|
|
|
|
CpuMatrix::mul<CpuMatrix, SparseAutoGrowRowCpuMatrix>(a, b, this, scaleAB,
|
|
|
|
scaleT);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CacheRowCpuMatrix::mul(CpuSparseMatrix* a, CpuMatrix* b, real scaleAB,
|
|
|
|
real scaleT) {
|
|
|
|
CpuMatrix::mul<CpuMatrix, CacheRowCpuMatrix>(a, b, this, scaleAB, scaleT);
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparsePrefetchRowCpuMatrix::addRows(const unsigned int* ids, size_t len) {
|
|
|
|
std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
|
|
|
|
for (size_t i = 0; i < len; i ++) {
|
|
|
|
CHECK_LT(*(ids + i), this->getHeight())
|
|
|
|
<< "id:" << *(ids + i) << "Height:" << this->getHeight()
|
|
|
|
<< "sparse id value exceeds the max input dimension, "
|
|
|
|
<< "it could be caused invalid input data samples";
|
|
|
|
}
|
|
|
|
localIndices.insert(localIndices.end(), ids, ids + len);
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparsePrefetchRowCpuMatrix::addRows(MatrixPtr input) {
|
|
|
|
CpuSparseMatrix* mat = dynamic_cast<CpuSparseMatrix*>(input.get());
|
|
|
|
CHECK(mat) << "only support sparse matrix";
|
|
|
|
addRows(reinterpret_cast<const unsigned int*>(mat->getCols()),
|
|
|
|
mat->getElementCnt());
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparsePrefetchRowCpuMatrix::addRows(IVectorPtr ids) {
|
|
|
|
std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
|
|
|
|
size_t numSamples = ids->getSize();
|
|
|
|
int* index = ids->getData();
|
|
|
|
for (size_t i = 0; i < numSamples; ++i) {
|
|
|
|
if (index[i] == -1) continue;
|
|
|
|
|
|
|
|
unsigned int id = (unsigned int)index[i];
|
|
|
|
CHECK_LT(id, this->getHeight())
|
|
|
|
<< "id:" << id << "Height:" << this->getHeight()
|
|
|
|
<< "sparse id value exceeds the max input dimension, "
|
|
|
|
<< "it could be caused invalid input data samples";
|
|
|
|
localIndices.push_back(id);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparsePrefetchRowCpuMatrix::setupIndices() {
|
|
|
|
auto& localIndices = indexDictHandle_->localIndices;
|
|
|
|
uniqueIds(localIndices);
|
|
|
|
// for each sparse row
|
|
|
|
for (size_t id = 0; id < localIndices.size(); ++id) {
|
|
|
|
globalIndices_[localIndices[id]] = id; // sparse row -> local id
|
|
|
|
}
|
|
|
|
checkStoreSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
void SparseRowCpuMatrix::checkIndices() {
|
|
|
|
std::vector<unsigned int>& localIndices = indexDictHandle_->localIndices;
|
|
|
|
for (size_t i = 0; i < localIndices.size(); ++i) {
|
|
|
|
CHECK_EQ(globalIndices_[localIndices[i]], i);
|
|
|
|
}
|
|
|
|
checkStoreSize();
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace paddle
|