You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
4.6 KiB
139 lines
4.6 KiB
7 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/framework/data_type.h"
|
||
|
#include "paddle/framework/op_registry.h"
|
||
|
#include "paddle/framework/var_type.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
class AssignFunctor {
|
||
|
public:
|
||
|
AssignFunctor(framework::Variable *out,
|
||
|
const platform::DeviceContext &dev_ctx)
|
||
|
: out_(out), dev_ctx_(dev_ctx) {}
|
||
|
|
||
|
void operator()(const framework::LoDTensor &lod_tensor) const {
|
||
|
auto &out_tensor = *out_->GetMutable<framework::LoDTensor>();
|
||
|
copy_tensor(lod_tensor, &out_tensor);
|
||
|
}
|
||
|
|
||
|
void operator()(const framework::LoDTensorArray &array) const {
|
||
|
auto &out_array = *out_->GetMutable<framework::LoDTensorArray>();
|
||
|
out_array.resize(array.size());
|
||
|
for (size_t i = 0; i < array.size(); ++i) {
|
||
|
copy_tensor(array[i], &out_array[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void operator()(const framework::SelectedRows &rows) const {
|
||
|
framework::SelectedRows &out_rows =
|
||
|
*out_->GetMutable<framework::SelectedRows>();
|
||
|
out_rows.set_rows(rows.rows());
|
||
|
out_rows.set_height(rows.height());
|
||
|
auto &t = rows.value();
|
||
|
out_rows.mutable_value()->CopyFrom(t, t.place(), dev_ctx_);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void operator()(const T &v) const {
|
||
|
PADDLE_THROW("Not support type for assign op %s", typeid(T).name());
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
void copy_tensor(const framework::LoDTensor &lod_tensor,
|
||
|
framework::LoDTensor *out) const {
|
||
|
auto &out_tensor = *out;
|
||
|
out_tensor.CopyFrom(lod_tensor, lod_tensor.place(), dev_ctx_);
|
||
|
out_tensor.set_lod(lod_tensor.lod());
|
||
|
}
|
||
|
|
||
|
framework::Variable *out_;
|
||
|
const platform::DeviceContext &dev_ctx_;
|
||
|
};
|
||
|
|
||
|
class AssignOp : public framework::OperatorBase {
|
||
|
public:
|
||
|
AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||
|
const framework::VariableNameMap &outputs,
|
||
|
const framework::AttributeMap &attrs)
|
||
|
: OperatorBase(type, inputs, outputs, attrs) {}
|
||
|
void Run(const framework::Scope &scope,
|
||
|
const platform::DeviceContext &dev_ctx) const override {
|
||
|
auto *x = scope.FindVar(Input("X"));
|
||
|
if (x == nullptr) {
|
||
|
return;
|
||
|
}
|
||
|
auto *out = scope.FindVar(Output("Out"));
|
||
|
PADDLE_ENFORCE(
|
||
|
out != nullptr,
|
||
|
"The Output(Out) should not be null if the Input(X) is set.");
|
||
|
framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
||
|
public:
|
||
|
AssignOpProtoMaker(framework::OpProto *proto,
|
||
|
framework::OpAttrChecker *op_checker)
|
||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||
|
AddInput("X",
|
||
|
"(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
|
||
|
"could be LoDTensor, SelectedRows or LoDTensorArray.")
|
||
|
.AsDispensable();
|
||
|
AddOutput("Out",
|
||
|
"(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
|
||
|
"is the same as input X.");
|
||
|
AddComment(R"DOC(Assign Operator
|
||
|
|
||
|
Out = X, when type in [LoDTensor/SelectedRows/LoDTensorArray]
|
||
|
raise error if the type is not listed above.
|
||
|
)DOC");
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class AssignInferShape : public framework::InferShapeBase {
|
||
|
public:
|
||
|
void operator()(framework::InferShapeContext *context) const override {
|
||
|
if (context->HasInput("X")) {
|
||
|
auto type = context->GetInputsVarType("X")[0];
|
||
|
if (type == framework::VarDesc_VarType_SELECTED_ROWS ||
|
||
|
type == framework::VarDesc_VarType_LOD_TENSOR) {
|
||
|
context->SetOutputDim("Out", context->GetInputDim("X"));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class AssignGradMaker : public framework::SingleGradOpDescMaker {
|
||
|
public:
|
||
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
||
|
|
||
|
protected:
|
||
|
std::unique_ptr<framework::OpDescBind> Apply() const override {
|
||
|
auto *op = new framework::OpDescBind();
|
||
|
op->SetType("assign");
|
||
|
op->SetInput("X", OutputGrad("Out"));
|
||
|
op->SetOutput("Out", InputGrad("X"));
|
||
|
return std::unique_ptr<framework::OpDescBind>(op);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
REGISTER_OPERATOR(assign, ops::AssignOp, ops::AssignGradMaker,
|
||
|
ops::AssignInferShape, ops::AssignOpProtoMaker);
|