You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/tensor/random.py

117 lines
4.0 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: define random functions
# __all__ = ['gaussin',
# 'uniform',
# 'shuffle',
# 'randn',
# 'rand',
# 'randint']
from ..fluid import core
from ..fluid.framework import device_guard, in_dygraph_mode, _varbase_creator
from ..fluid.layers.layer_function_generator import templatedoc
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import convert_dtype, check_variable_and_dtype, check_type, check_dtype
__all__ = ['randperm']
@templatedoc()
def randperm(n,
out=None,
dtype="int64",
device=None,
stop_gradient=True,
seed=0):
"""
${comment}
Args:
n (int): The upper bound (exclusive), and it should be greater than 0.
out (Variable, optional): Optional output which can be any created
Variable that meets the requirements to store the result of operation.
If out is None, a new Varibale will be create to store the result.
Default: None.
dtype (np.dtype|core.VarDesc.VarType|str, optional): The type of the
output Tensor. Supported data types: int64, int32. Default: int32.
device (str, optional): Specific the output variable to be saved in cpu
or gpu memory. Supported None, 'cpu', 'gpu'. If it is None, the output
variable will be automatically assigned devices.
Default: None.
stop_gradient (bool, optional): Whether grad should record operations
on the returned tensor. Default: True.
seed (int, optional): Random seed used for permute samples. If seed is
equal to 0, it means use a seed generated by the system. Note that
if seed is not 0, this operator will always generate the same random
permutation every time. Default: 0.
Returns:
${out_comment}.
Return Type:
${out_type}
Examples:
.. code-block:: python
import paddle
import paddle.fluid as fluid
num = 6
is_use_gpu = False
data_1 = paddle.randperm(num)
fluid.layers.Print(data_1)
data_2 = paddle.randperm(num, dtype="int32", seed=1)
fluid.layers.Print(data_2)
data_3 = paddle.randperm(num, stop_gradient=False, device="cpu")
fluid.layers.Print(data_3)
paddle.randperm(num, out=data_3)
fluid.layers.Print(data_3)
place = fluid.CUDAPlace(0) if is_use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
exe.run()
"""
if n < 1:
raise ValueError("The input n should be greater than 0 in randperm op.")
check_dtype(dtype, 'dtype', ['int64', 'int32'], 'randperm')
dtype = convert_dtype(dtype)
if device not in [None, 'cpu', 'gpu']:
raise ValueError("The input device should in [None, 'cpu', 'gpu'].")
check_type(stop_gradient, 'stop_gradient', bool, 'randperm')
helper = LayerHelper("randperm", **locals())
if out is None:
out = helper.create_variable_for_type_inference(dtype=dtype)
else:
check_variable_and_dtype(out, 'out', [dtype], 'randperm')
if stop_gradient:
out.stop_gradient = True
inputs = dict()
outputs = {'Out': [out]}
attrs = {'n': n, 'dtype': out.dtype, 'seed': seed}
with device_guard(device):
helper.append_op(
type='randperm', inputs=inputs, outputs=outputs, attrs=attrs)
return out