You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
149 lines
5.5 KiB
149 lines
5.5 KiB
6 years ago
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/fluid/operators/math/prelu.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
namespace math {
|
||
|
|
||
|
static const int CUDA_NUM_THREADS = 1024;
|
||
|
static const int CUDA_MAX_NUM_BLOCKS = 65535;
|
||
|
inline static int GET_NUM_BLOCKS(const int N) {
|
||
|
return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
__global__ void PReluChannelWiseKernel(const T *input, const T *alpha,
|
||
|
T *output, int channel,
|
||
|
size_t spatial_size) {
|
||
|
size_t offset = blockIdx.x * spatial_size;
|
||
|
const T *in = input + offset;
|
||
|
T *out = output + offset;
|
||
|
T scale = alpha[blockIdx.x % channel];
|
||
|
|
||
|
for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
|
||
|
T x = in[i];
|
||
|
out[i] = (x > 0) ? x : scale * x;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
__global__ void PReluElementWiseKernel(const T *input, const T *alpha,
|
||
|
T *output, size_t spatial_size) {
|
||
|
size_t offset = blockIdx.x * spatial_size;
|
||
|
const T *in = input + offset;
|
||
|
const T *scale = alpha + offset;
|
||
|
T *out = output + offset;
|
||
|
|
||
|
for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
|
||
|
T x = in[i];
|
||
|
out[i] = (x > 0) ? x : scale[i] * x;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
__global__ void PReluScalarKernel(const T *input, const T *alpha, T *output,
|
||
|
size_t spatial_size) {
|
||
|
size_t offset = blockIdx.x * spatial_size;
|
||
|
const T *in = input + offset;
|
||
|
T scale = *alpha;
|
||
|
T *out = output + offset;
|
||
|
|
||
|
for (size_t i = threadIdx.x; i < spatial_size; i += blockDim.x) {
|
||
|
T x = in[i];
|
||
|
out[i] = (x > 0) ? x : scale * x;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline void PReluChannelWise(cudaStream_t stream, const T *input,
|
||
|
const T *alpha, T *output,
|
||
|
std::vector<int> input_shape) {
|
||
|
size_t unroll = input_shape[0] * input_shape[1];
|
||
|
size_t spatial_size = input_shape[2] * input_shape[3];
|
||
|
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
|
||
|
PReluChannelWiseKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
|
||
|
input, alpha, output, input_shape[1], spatial_size);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline void PReluElementWise(cudaStream_t stream, const T *input,
|
||
|
const T *alpha, T *output,
|
||
|
std::vector<int> input_shape) {
|
||
|
size_t unroll = input_shape[0] * input_shape[1];
|
||
|
size_t spatial_size = input_shape[2] * input_shape[3];
|
||
|
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
|
||
|
PReluElementWiseKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
|
||
|
input, alpha, output, spatial_size);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
static inline void PReluScalar(cudaStream_t stream, const T *input,
|
||
|
const T *alpha, T *output,
|
||
|
std::vector<int> input_shape) {
|
||
|
size_t unroll = input_shape[0] * input_shape[1];
|
||
|
size_t spatial_size = input_shape[2] * input_shape[3];
|
||
|
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
|
||
|
PReluScalarKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
|
||
|
input, alpha, output, spatial_size);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void PreluChannelWiseDirectCUDAFunctor<T>::operator()(
|
||
|
cudaStream_t stream, const T *input, const T *alpha, T *output,
|
||
|
std::vector<int> input_shape) {
|
||
|
size_t unroll = input_shape[0] * input_shape[1];
|
||
|
size_t spatial_size = input_shape[2] * input_shape[3];
|
||
|
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
|
||
|
PReluChannelWiseKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
|
||
|
input, alpha, output, input_shape[1], spatial_size);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void PreluElementWiseDirectCUDAFunctor<T>::operator()(
|
||
|
cudaStream_t stream, const T *input, const T *alpha, T *output,
|
||
|
std::vector<int> input_shape) {
|
||
|
size_t unroll = input_shape[0] * input_shape[1];
|
||
|
size_t spatial_size = input_shape[2] * input_shape[3];
|
||
|
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
|
||
|
PReluElementWiseKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
|
||
|
input, alpha, output, spatial_size);
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void PreluScalarDirectCUDAFunctor<T>::operator()(cudaStream_t stream,
|
||
|
const T *input, const T *alpha,
|
||
|
T *output,
|
||
|
std::vector<int> input_shape) {
|
||
|
size_t unroll = input_shape[0] * input_shape[1];
|
||
|
size_t spatial_size = input_shape[2] * input_shape[3];
|
||
|
CHECK_LT(unroll, CUDA_MAX_NUM_BLOCKS);
|
||
|
PReluScalarKernel<<<unroll, CUDA_NUM_THREADS, 0, stream>>>(
|
||
|
input, alpha, output, spatial_size);
|
||
|
}
|
||
|
|
||
|
template class PreluChannelWiseDirectCUDAFunctor<float>;
|
||
|
template class PreluChannelWiseDirectCUDAFunctor<double>;
|
||
|
|
||
|
template class PreluElementWiseDirectCUDAFunctor<float>;
|
||
|
template class PreluElementWiseDirectCUDAFunctor<double>;
|
||
|
|
||
|
template class PreluScalarDirectCUDAFunctor<float>;
|
||
|
template class PreluScalarDirectCUDAFunctor<double>;
|
||
|
|
||
|
} // namespace math
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|