You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/evaluators/DetectionMAPEvaluator.cpp

309 lines
11 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Evaluator.h"
#include "paddle/gserver/layers/DetectionUtil.h"
using std::map;
using std::vector;
using std::pair;
using std::make_pair;
namespace paddle {
/**
* @brief detection map Evaluator
*
* The config file api is detection_map_evaluator.
*/
class DetectionMAPEvaluator : public Evaluator {
public:
DetectionMAPEvaluator()
: evaluateDifficult_(false), cpuOutput_(nullptr), cpuLabel_(nullptr) {}
virtual void start() {
Evaluator::start();
allTruePos_.clear();
allFalsePos_.clear();
numPos_.clear();
}
virtual real evalImp(std::vector<Argument>& arguments) {
overlapThreshold_ = config_.overlap_threshold();
backgroundId_ = config_.background_id();
evaluateDifficult_ = config_.evaluate_difficult();
apType_ = config_.ap_type();
MatrixPtr detectTmpValue = arguments[0].value;
Matrix::resizeOrCreate(cpuOutput_,
detectTmpValue->getHeight(),
detectTmpValue->getWidth(),
false,
false);
MatrixPtr labelTmpValue = arguments[1].value;
Matrix::resizeOrCreate(cpuLabel_,
labelTmpValue->getHeight(),
labelTmpValue->getWidth(),
false,
false);
cpuOutput_->copyFrom(*detectTmpValue);
cpuLabel_->copyFrom(*labelTmpValue);
Argument label = arguments[1];
const int* labelIndex = label.sequenceStartPositions->getData(false);
size_t batchSize = label.getNumSequences();
vector<map<size_t, vector<NormalizedBBox>>> allGTBBoxes;
vector<map<size_t, vector<pair<real, NormalizedBBox>>>> allDetectBBoxes;
for (size_t n = 0; n < batchSize; ++n) {
map<size_t, vector<NormalizedBBox>> bboxes;
for (int i = labelIndex[n]; i < labelIndex[n + 1]; ++i) {
vector<NormalizedBBox> bbox;
getBBoxFromLabelData(cpuLabel_->getData() + i * 6, 1, bbox);
int c = cpuLabel_->getData()[i * 6];
bboxes[c].push_back(bbox[0]);
}
allGTBBoxes.push_back(bboxes);
}
8 years ago
size_t n = 0;
const real* cpuOutputData = cpuOutput_->getData();
for (size_t imgId = 0; imgId < batchSize; ++imgId) {
map<size_t, vector<pair<real, NormalizedBBox>>> bboxes;
8 years ago
size_t curImgId = static_cast<size_t>((cpuOutputData + n * 7)[0]);
while (curImgId == imgId && n < cpuOutput_->getHeight()) {
vector<real> label;
vector<real> score;
vector<NormalizedBBox> bbox;
8 years ago
getBBoxFromDetectData(cpuOutputData + n * 7, 1, label, score, bbox);
bboxes[label[0]].push_back(make_pair(score[0], bbox[0]));
++n;
8 years ago
curImgId = static_cast<size_t>((cpuOutputData + n * 7)[0]);
}
allDetectBBoxes.push_back(bboxes);
}
for (size_t n = 0; n < batchSize; ++n) {
for (map<size_t, vector<NormalizedBBox>>::iterator it =
allGTBBoxes[n].begin();
it != allGTBBoxes[n].end();
++it) {
size_t count = 0;
if (evaluateDifficult_) {
count = it->second.size();
} else {
for (size_t i = 0; i < it->second.size(); ++i)
if (!(it->second[i].isDifficult)) ++count;
}
if (numPos_.find(it->first) == numPos_.end() && count != 0) {
numPos_[it->first] = count;
} else {
numPos_[it->first] += count;
}
}
}
// calcTFPos
8 years ago
calcTFPos(batchSize, allGTBBoxes, allDetectBBoxes);
return 0;
}
virtual void printStats(std::ostream& os) const {
real mAP = calcMAP();
8 years ago
os << "Detection mAP=" << mAP;
}
virtual void distributeEval(ParameterClient2* client) {
LOG(FATAL) << "Distribute detection evaluation not implemented.";
}
protected:
void calcTFPos(const size_t batchSize,
const vector<map<size_t, vector<NormalizedBBox>>>& allGTBBoxes,
const vector<map<size_t, vector<pair<real, NormalizedBBox>>>>&
8 years ago
allDetectBBoxes) {
for (size_t n = 0; n < allDetectBBoxes.size(); ++n) {
if (allGTBBoxes[n].size() == 0) {
for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator
it = allDetectBBoxes[n].begin();
it != allDetectBBoxes[n].end();
++it) {
size_t label = it->first;
for (size_t i = 0; i < it->second.size(); ++i) {
8 years ago
allTruePos_[label].push_back(make_pair(it->second[i].first, 0));
allFalsePos_[label].push_back(make_pair(it->second[i].first, 1));
}
}
} else {
for (map<size_t, vector<pair<real, NormalizedBBox>>>::const_iterator
it = allDetectBBoxes[n].begin();
it != allDetectBBoxes[n].end();
++it) {
size_t label = it->first;
vector<pair<real, NormalizedBBox>> predBBoxes = it->second;
if (allGTBBoxes[n].find(label) == allGTBBoxes[n].end()) {
for (size_t i = 0; i < predBBoxes.size(); ++i) {
8 years ago
allTruePos_[label].push_back(make_pair(predBBoxes[i].first, 0));
allFalsePos_[label].push_back(make_pair(predBBoxes[i].first, 1));
}
} else {
vector<NormalizedBBox> gtBBoxes =
allGTBBoxes[n].find(label)->second;
vector<bool> visited(gtBBoxes.size(), false);
// Sort detections in descend order based on scores
std::sort(predBBoxes.begin(),
predBBoxes.end(),
sortScorePairDescend<NormalizedBBox>);
for (size_t i = 0; i < predBBoxes.size(); ++i) {
real maxOverlap = -1.0;
size_t maxIdx = 0;
for (size_t j = 0; j < gtBBoxes.size(); ++j) {
real overlap =
jaccardOverlap(predBBoxes[i].second, gtBBoxes[j]);
if (overlap > maxOverlap) {
maxOverlap = overlap;
maxIdx = j;
}
}
if (maxOverlap > overlapThreshold_) {
if (evaluateDifficult_ ||
(!evaluateDifficult_ && !gtBBoxes[maxIdx].isDifficult)) {
if (!visited[maxIdx]) {
8 years ago
allTruePos_[label].push_back(
make_pair(predBBoxes[i].first, 1));
8 years ago
allFalsePos_[label].push_back(
make_pair(predBBoxes[i].first, 0));
visited[maxIdx] = true;
} else {
8 years ago
allTruePos_[label].push_back(
make_pair(predBBoxes[i].first, 0));
8 years ago
allFalsePos_[label].push_back(
make_pair(predBBoxes[i].first, 1));
}
}
} else {
8 years ago
allTruePos_[label].push_back(make_pair(predBBoxes[i].first, 0));
allFalsePos_[label].push_back(
make_pair(predBBoxes[i].first, 1));
}
}
}
}
}
}
}
real calcMAP() const {
real mAP = 0.0;
size_t count = 0;
for (map<size_t, size_t>::const_iterator it = numPos_.begin();
it != numPos_.end();
++it) {
size_t label = it->first;
size_t labelNumPos = it->second;
if (labelNumPos == 0 || allTruePos_.find(label) == allTruePos_.end())
continue;
vector<pair<real, size_t>> labelTruePos = allTruePos_.find(label)->second;
vector<pair<real, size_t>> labelFalsePos =
allFalsePos_.find(label)->second;
// Compute average precision.
vector<size_t> tpCumSum;
getAccumulation(labelTruePos, &tpCumSum);
vector<size_t> fpCumSum;
getAccumulation(labelFalsePos, &fpCumSum);
std::vector<real> precision, recall;
size_t num = tpCumSum.size();
// Compute Precision.
for (size_t i = 0; i < num; ++i) {
CHECK_LE(tpCumSum[i], labelNumPos);
precision.push_back(static_cast<real>(tpCumSum[i]) /
static_cast<real>(tpCumSum[i] + fpCumSum[i]));
recall.push_back(static_cast<real>(tpCumSum[i]) / labelNumPos);
}
// VOC2007 style
if (apType_ == "11point") {
vector<real> maxPrecisions(11, 0.0);
int startIdx = num - 1;
for (int j = 10; j >= 0; --j)
for (int i = startIdx; i >= 0; --i) {
if (recall[i] < j / 10.) {
startIdx = i;
if (j > 0) maxPrecisions[j - 1] = maxPrecisions[j];
break;
} else {
if (maxPrecisions[j] < precision[i])
maxPrecisions[j] = precision[i];
}
}
for (int j = 10; j >= 0; --j) mAP += maxPrecisions[j] / 11;
++count;
} else if (apType_ == "Integral") {
// Nature integral
real averagePrecisions = 0.;
real prevRecall = 0.;
for (size_t i = 0; i < num; ++i) {
if (fabs(recall[i] - prevRecall) > 1e-6)
averagePrecisions += precision[i] * fabs(recall[i] - prevRecall);
prevRecall = recall[i];
}
mAP += averagePrecisions;
++count;
} else {
LOG(FATAL) << "Unkown ap version: " << apType_;
}
}
if (count != 0) mAP /= count;
8 years ago
return mAP * 100;
}
void getAccumulation(vector<pair<real, size_t>> inPairs,
vector<size_t>* accuVec) const {
std::stable_sort(
inPairs.begin(), inPairs.end(), sortScorePairDescend<size_t>);
accuVec->clear();
size_t sum = 0;
for (size_t i = 0; i < inPairs.size(); ++i) {
sum += inPairs[i].second;
accuVec->push_back(sum);
}
}
std::string getTypeImpl() const { return "detection_map"; }
8 years ago
real getValueImpl() const { return calcMAP(); }
private:
8 years ago
real overlapThreshold_; // overlap threshold when determining whether matched
bool evaluateDifficult_; // whether evaluate difficult ground truth
size_t backgroundId_; // class index of background
std::string apType_; // how to calculate mAP (Integral or 11point)
MatrixPtr cpuOutput_;
MatrixPtr cpuLabel_;
8 years ago
map<size_t, size_t> numPos_; // counts of true objects each classification
map<size_t, vector<pair<real, size_t>>>
allTruePos_; // true positive prediction
map<size_t, vector<pair<real, size_t>>>
allFalsePos_; // false positive prediction
};
REGISTER_EVALUATOR(detection_map, DetectionMAPEvaluator);
} // namespace paddle