You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
65 lines
2.0 KiB
65 lines
2.0 KiB
7 years ago
|
#!/usr/bin/env python
|
||
|
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from paddle.trainer_config_helpers import *
|
||
|
|
||
|
######################## data source ################################
|
||
|
dict_path = 'gserver/tests/Sequence/tour_dict_phrase.dict'
|
||
|
dict_file = dict()
|
||
|
for line_count, line in enumerate(open(dict_path, "r")):
|
||
|
dict_file[line.strip()] = line_count
|
||
|
|
||
|
define_py_data_sources2(
|
||
|
train_list='gserver/tests/Sequence/train.list',
|
||
|
test_list=None,
|
||
|
module='sequenceGen',
|
||
|
obj='process',
|
||
|
args={"dict_file": dict_file})
|
||
|
|
||
|
settings(batch_size=5)
|
||
|
######################## network configure ################################
|
||
|
dict_dim = len(open(dict_path, 'r').readlines())
|
||
|
word_dim = 128
|
||
|
hidden_dim = 256
|
||
|
label_dim = 3
|
||
|
sparse_update = get_config_arg("sparse_update", bool, False)
|
||
|
|
||
|
data = data_layer(name="word", size=dict_dim)
|
||
|
|
||
|
emb = embedding_layer(
|
||
|
input=data,
|
||
|
size=word_dim,
|
||
|
param_attr=ParamAttr(sparse_update=sparse_update))
|
||
|
|
||
|
with mixed_layer(size=hidden_dim * 4) as lstm_input:
|
||
|
lstm_input += full_matrix_projection(input=emb)
|
||
|
|
||
|
lstm = lstmemory(
|
||
|
input=lstm_input,
|
||
|
act=TanhActivation(),
|
||
|
gate_act=SigmoidActivation(),
|
||
|
state_act=TanhActivation())
|
||
|
|
||
|
lstm_last = last_seq(input=lstm)
|
||
|
|
||
|
with mixed_layer(
|
||
|
size=label_dim, act=SoftmaxActivation(), bias_attr=True) as output:
|
||
|
output += full_matrix_projection(input=lstm_last)
|
||
|
|
||
|
outputs(
|
||
|
classification_cost(
|
||
|
input=output, label=data_layer(
|
||
|
name="label", size=1)))
|