You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/norm_op.h

176 lines
8.1 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
template <typename DeviceContext, typename T, typename AttrType = T>
class NormKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
const framework::Tensor* scale = context.Input<framework::Tensor>("Scale");
auto* out = context.Output<framework::Tensor>("Out");
auto epsilon = static_cast<T>(context.Attr<AttrType>("epsilon"));
out->mutable_data<T>(context.GetPlace());
int batch_size = in_x->dims()[0];
int channels = in_x->dims()[1];
int height = in_x->dims()[2];
int width = in_x->dims()[3];
int fea_len = height * width;
auto* place =
context.template device_context<DeviceContext>().eigen_device();
7 years ago
auto x =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
*in_x, framework::make_ddim({batch_size, fea_len * channels}));
// get square
framework::Tensor x_square;
x_square.mutable_data<T>(in_x->dims(), context.GetPlace());
7 years ago
auto x_square_eigen =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
x_square, framework::make_ddim({batch_size, fea_len * channels}));
x_square_eigen.device(*place) = x.square();
7 years ago
auto scale_eigen =
framework::EigenVector<T, Eigen::RowMajor, Eigen::DenseIndex>::Flatten(
*scale);
for (int n = 0; n < batch_size; ++n) {
framework::Tensor in_x_batch = in_x->Slice(n, n + 1);
7 years ago
auto in_x_batch_eigen =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
in_x_batch, framework::make_ddim({channels, fea_len}));
framework::Tensor x_square_batch = x_square.Slice(n, n + 1);
7 years ago
auto x_square_batch_eigen =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
x_square_batch, framework::make_ddim({channels, fea_len}));
framework::Tensor out_batch = out->Slice(n, n + 1);
7 years ago
auto out_batch_eigen =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
out_batch, framework::make_ddim({channels, fea_len}));
framework::Tensor tmp_tensor;
tmp_tensor.mutable_data<T>(framework::make_ddim({1, fea_len}),
context.GetPlace());
7 years ago
auto tmp = framework::EigenVector<T, Eigen::RowMajor,
Eigen::DenseIndex>::Flatten(tmp_tensor);
// get colsum and sqrt , inverse
auto dim = Eigen::array<int, 1>({{0}});
tmp.device(*place) = x_square_batch_eigen.sum(dim);
tmp.device(*place) = (tmp + epsilon).sqrt().inverse();
Eigen::array<int, 2> broadcast_dim_col;
broadcast_dim_col[1] = 1;
broadcast_dim_col[0] = channels;
out_batch_eigen.device(*place) =
in_x_batch_eigen * (tmp.broadcast(broadcast_dim_col));
Eigen::array<int, 2> broadcast_dim_row;
broadcast_dim_row[1] = fea_len;
broadcast_dim_row[0] = 1;
out_batch_eigen.device(*place) =
out_batch_eigen * (scale_eigen.broadcast(broadcast_dim_row));
}
}
};
template <typename DeviceContext, typename T, typename AttrType = T>
class NormGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const framework::Tensor* in_x = context.Input<framework::Tensor>("X");
const framework::Tensor* scale = context.Input<framework::Tensor>("Scale");
const framework::Tensor* out_grad =
context.Input<framework::Tensor>(framework::GradVarName("Out"));
auto epsilon = static_cast<T>(context.Attr<AttrType>("epsilon"));
framework::Tensor* in_x_grad =
context.Output<framework::Tensor>(framework::GradVarName("X"));
in_x_grad->mutable_data<T>(context.GetPlace());
int batch_size = in_x->dims()[0];
int channels = in_x->dims()[1];
int height = in_x->dims()[2];
int width = in_x->dims()[3];
int fea_len = height * width;
auto* place =
context.template device_context<DeviceContext>().eigen_device();
7 years ago
auto scale_eigen =
framework::EigenVector<T, Eigen::RowMajor, Eigen::DenseIndex>::Flatten(
*scale);
auto x =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
*in_x, framework::make_ddim({batch_size, fea_len * channels}));
// get square
framework::Tensor x_square;
x_square.mutable_data<T>(in_x->dims(), context.GetPlace());
7 years ago
auto x_square_eigen =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
x_square, framework::make_ddim({batch_size, fea_len * channels}));
x_square_eigen.device(*place) = x.square();
for (int n = 0; n < batch_size; ++n) {
framework::Tensor in_x_batch = in_x->Slice(n, n + 1);
7 years ago
auto in_x_batch_eigen =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
in_x_batch, framework::make_ddim({channels, fea_len}));
framework::Tensor in_g_batch = in_x_grad->Slice(n, n + 1);
7 years ago
auto in_g_batch_eigen =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
in_g_batch, framework::make_ddim({channels, fea_len}));
framework::Tensor x_square_batch = x_square.Slice(n, n + 1);
7 years ago
auto x_square_batch_eigen =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
x_square_batch, framework::make_ddim({channels, fea_len}));
framework::Tensor outg_batch = out_grad->Slice(n, n + 1);
7 years ago
auto outg_batch_eigen =
framework::EigenMatrix<T, Eigen::RowMajor, Eigen::DenseIndex>::From(
outg_batch, framework::make_ddim({channels, fea_len}));
framework::Tensor tmp_tensor;
tmp_tensor.mutable_data<T>(framework::make_ddim({1, fea_len}),
context.GetPlace());
7 years ago
auto tmp_eigen =
framework::EigenVector<T, Eigen::RowMajor,
Eigen::DenseIndex>::Flatten(tmp_tensor);
auto dim = Eigen::array<int, 1>({{0}});
tmp_eigen.device(*place) = (in_x_batch_eigen * outg_batch_eigen).sum(dim);
framework::Tensor norm_tmp_tensor;
norm_tmp_tensor.mutable_data<T>(framework::make_ddim({1, fea_len}),
context.GetPlace());
7 years ago
auto norm_tmp_eigen =
framework::EigenVector<T, Eigen::RowMajor,
Eigen::DenseIndex>::Flatten(norm_tmp_tensor);
norm_tmp_eigen.device(*place) =
(x_square_batch_eigen.sum(dim) + epsilon).sqrt();
Eigen::array<int, 2> broadcast_dim_col;
broadcast_dim_col[1] = 1;
broadcast_dim_col[0] = channels;
in_g_batch_eigen.device(*place) =
in_x_batch_eigen * tmp_eigen.broadcast(broadcast_dim_col);
in_g_batch_eigen.device(*place) =
in_g_batch_eigen /
(norm_tmp_eigen * norm_tmp_eigen).broadcast(broadcast_dim_col);
in_g_batch_eigen.device(*place) = outg_batch_eigen - in_g_batch_eigen;
// outg_batch_eigen + (in_g_batch_eigen * -1);
in_g_batch_eigen.device(*place) =
in_g_batch_eigen / norm_tmp_eigen.broadcast(broadcast_dim_col);
Eigen::array<int, 2> broadcast_dim_row;
broadcast_dim_row[1] = fea_len;
broadcast_dim_row[0] = 1;
in_g_batch_eigen.device(*place) =
in_g_batch_eigen * (scale_eigen.broadcast(broadcast_dim_row));
}
}
};
} // namespace operators
} // namespace paddle