You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/gserver/layers/HierarchicalSigmoidLayer.cpp

135 lines
4.5 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "HierarchicalSigmoidLayer.h"
#include "paddle/utils/Util.h"
namespace paddle {
REGISTER_LAYER(hsigmoid, HierarchicalSigmoidLayer);
bool HierarchicalSigmoidLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
CHECK(config_.has_num_classes()) << "num_classes must be specifed in config";
numClasses_ = config_.num_classes();
CHECK_GE(numClasses_, (size_t)2);
codeLength_ = findLastSet(numClasses_ - 1);
size_t height = numClasses_ - 1;
/* initialize the weightList */
// The last input layer is for label
CHECK(!parameters_.back());
for (size_t i = 0; i < inputLayers_.size() - 1; i++) {
size_t width = inputLayers_[i]->getSize();
// create a new weight
CHECK_EQ(parameters_[i]->getSize(), width * height);
Weight* w = new Weight(height, width, parameters_[i]);
// append the new weight to the list
weights_.emplace_back(w);
}
/* initialize biases_ */
if (biasParameter_.get() != NULL) {
CHECK_EQ(biasParameter_->getSize(), numClasses_ - 1);
biases_.reset(new Weight(1, numClasses_ - 1, biasParameter_));
}
return true;
}
void HierarchicalSigmoidLayer::forward(PassType passType) {
Layer::forward(passType);
/* malloc memory for the output_ if necessary */
int batchSize = getInputValue(0)->getHeight();
int size = getSize();
reserveOutput(batchSize, size);
Matrix::resizeOrCreate(preOutput_.value,
batchSize,
codeLength_,
/* trans */ false,
useGpu(deviceId_));
Matrix::resizeOrCreate(preOutput_.grad,
batchSize,
codeLength_,
/* trans */ false,
useGpu(deviceId_));
IVectorPtr label = getInput(*getLabelLayer()).ids;
preOutput_.value->zeroMem();
/* add the bias-vector */
if (biases_.get() != NULL) {
preOutput_.value->addByBitCode(numClasses_, *label, *biases_->getW());
}
for (size_t i = 0; i < inputLayers_.size() - 1; ++i) {
MatrixPtr input = getInputValue(i);
preOutput_.value->mulByBitCode(
numClasses_, *label, *weights_[i]->getW(), *input);
}
// keep consistent with the clipping in the following softrelu
preOutput_.value->clip(-40.0, 40.0);
preOutput_.value->sumByBitCode(numClasses_,
*label,
*output_.value,
-1); // scaleSum
preOutput_.value->softrelu(*preOutput_.value);
MatrixPtr sum =
Matrix::create(batchSize, 1, /* trans= */ false, useGpu(deviceId_));
preOutput_.value->rowSum(*sum);
output_.value->add(*sum);
}
void HierarchicalSigmoidLayer::backward(const UpdateCallback& callback) {
IVectorPtr label = getInput(*getLabelLayer()).ids;
preOutput_.grad->one();
preOutput_.grad->softreluDerivative(*preOutput_.value);
preOutput_.grad->subByBitCode(numClasses_, *label);
if (biases_ && biases_->getWGrad()) {
preOutput_.grad->addByBitCodeBackward(
numClasses_, *label, *biases_->getWGrad());
/* Increasing the number of gradient */
biases_->getParameterPtr()->incUpdate(callback);
}
for (size_t i = 0; i < inputLayers_.size() - 1; ++i) {
/* Calculate the W-gradient for the current layer */
MatrixPtr input = getInputValue(i);
if (weights_[i]->getWGrad()) {
preOutput_.grad->mulByBitCodeBackwardWeight(
numClasses_, *label, *weights_[i]->getWGrad(), *input);
/* Increasing the number of gradient */
weights_[i]->getParameterPtr()->incUpdate(callback);
}
/* Calculate the input layers error */
MatrixPtr inputGrad = getInputGrad(i);
if (inputGrad) {
preOutput_.grad->mulByBitCodeBackwardError(
numClasses_, *label, *weights_[i]->getW(), *inputGrad);
}
}
}
} // namespace paddle