You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/math/gru_compute.cu

178 lines
7.6 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
7 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <paddle/fluid/platform/device_context.h>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/gru_gpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
#include "paddle/fluid/operators/math/gru_compute.h"
7 years ago
namespace paddle {
namespace operators {
namespace math {
template <typename T>
struct GRUUnitFunctor<platform::CUDADeviceContext, T> {
static void compute(const platform::CUDADeviceContext &context,
GRUMetaValue<T> value, int frame_size, int batch_size,
const detail::ActivationType active_node,
const detail::ActivationType active_gate) {
auto stream = context.stream();
7 years ago
dim3 threads;
dim3 grid;
if (batch_size == 1) {
int frame_per_block = frame_size <= 1024 ? frame_size : 1024;
int frame_blocks = (frame_size + 1024 - 1) / 1024;
threads = dim3(frame_per_block, 1);
grid = dim3(frame_blocks, 1);
7 years ago
} else {
threads = dim3(32, 32);
grid = dim3((frame_size + 32 - 1) / 32, (batch_size + 32 - 1) / 32);
7 years ago
}
auto blas = math::GetBlas<platform::CUDADeviceContext, T>(context);
if (value.prev_out_value) {
blas.GEMM(false, false, batch_size, frame_size * 2, frame_size, 1,
value.prev_out_value, frame_size, value.gate_weight,
frame_size * 2, 1, value.gate_value, frame_size * 3);
7 years ago
}
if (batch_size == 1) {
7 years ago
detail::KeGruForwardResetOutput<detail::forward::gru_resetOutput<T>,
/* is_batch= */ false,
7 years ago
T><<<grid, threads, 0, stream>>>(
detail::forward::gru_resetOutput<T>(), value.gate_value,
value.reset_output_value, value.prev_out_value, frame_size,
batch_size, active_gate);
7 years ago
} else {
detail::KeGruForwardResetOutput<detail::forward::gru_resetOutput<T>,
/* is_batch= */ true,
7 years ago
T><<<grid, threads, 0, stream>>>(
detail::forward::gru_resetOutput<T>(), value.gate_value,
value.reset_output_value, value.prev_out_value, frame_size,
batch_size, active_gate);
7 years ago
}
if (value.prev_out_value) {
blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
value.reset_output_value, frame_size, value.state_weight,
frame_size, 1, value.gate_value + frame_size * 2,
frame_size * 3);
7 years ago
}
if (batch_size == 1) {
7 years ago
detail::KeGruForwardFinalOutput<detail::forward::gru_finalOutput<T>,
/* is_batch= */ false,
7 years ago
T><<<grid, threads, 0, stream>>>(
detail::forward::gru_finalOutput<T>(), value.gate_value,
value.prev_out_value, value.output_value, frame_size, batch_size,
7 years ago
active_node);
} else {
detail::KeGruForwardFinalOutput<detail::forward::gru_finalOutput<T>,
/* is_batch= */ true,
7 years ago
T><<<grid, threads, 0, stream>>>(
detail::forward::gru_finalOutput<T>(), value.gate_value,
value.prev_out_value, value.output_value, frame_size, batch_size,
7 years ago
active_node);
}
}
};
template <typename T>
struct GRUUnitGradFunctor<platform::CUDADeviceContext, T> {
static void compute(const platform::CUDADeviceContext &context,
GRUMetaValue<T> value, GRUMetaGrad<T> grad,
int frame_size, int batch_size,
const detail::ActivationType active_node,
const detail::ActivationType active_gate) {
auto stream = context.stream();
7 years ago
dim3 threads;
dim3 grid;
if (batch_size == 1) {
int frame_per_block = frame_size <= 1024 ? frame_size : 1024;
int frame_blocks = (frame_size + 1024 - 1) / 1024;
threads = dim3(frame_per_block, 1);
grid = dim3(frame_blocks, 1);
7 years ago
} else {
threads = dim3(32, 32);
grid = dim3((frame_size + 32 - 1) / 32, (batch_size + 32 - 1) / 32);
7 years ago
}
if (batch_size == 1) {
7 years ago
detail::KeGruBackwardStateGrad<
detail::backward::gru_stateGrad<T>,
/* is_batch= */ false><<<grid, threads, 0, stream>>>(
detail::backward::gru_stateGrad<T>(), value.gate_value,
grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
grad.output_grad, frame_size, batch_size, active_node);
7 years ago
} else {
detail::KeGruBackwardStateGrad<
detail::backward::gru_stateGrad<T>,
/* is_batch= */ true><<<grid, threads, 0, stream>>>(
detail::backward::gru_stateGrad<T>(), value.gate_value,
grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
grad.output_grad, frame_size, batch_size, active_node);
7 years ago
}
auto blas = math::GetBlas<platform::CUDADeviceContext, T>(context);
if (value.prev_out_value && grad.prev_out_grad) {
blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
grad.gate_grad + frame_size * 2, frame_size * 3,
value.state_weight, frame_size, 0, grad.reset_output_grad,
frame_size);
7 years ago
if (grad.state_weight_grad) {
blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
value.reset_output_value, frame_size,
grad.gate_grad + frame_size * 2, frame_size * 3, 1,
grad.state_weight_grad, frame_size);
7 years ago
}
}
if (batch_size == 1) {
7 years ago
detail::KeGruBackwardResetGrad<
detail::backward::gru_resetGrad<T>,
/* is_batch= */ false><<<grid, threads, 0, stream>>>(
detail::backward::gru_resetGrad<T>(), value.gate_value,
grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
grad.reset_output_grad, frame_size, batch_size, active_gate);
7 years ago
} else {
detail::KeGruBackwardResetGrad<
detail::backward::gru_resetGrad<T>,
/* is_batch= */ true><<<grid, threads, 0, stream>>>(
detail::backward::gru_resetGrad<T>(), value.gate_value,
grad.gate_grad, value.prev_out_value, grad.prev_out_grad,
grad.reset_output_grad, frame_size, batch_size, active_gate);
7 years ago
}
if (grad.prev_out_grad && value.prev_out_value) {
blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
grad.gate_grad, frame_size * 3, value.gate_weight,
frame_size * 2, 1, grad.prev_out_grad, frame_size);
7 years ago
if (grad.gate_weight_grad) {
blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
value.prev_out_value, frame_size, grad.gate_grad,
frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2);
7 years ago
}
}
}
};
template struct GRUUnitFunctor<platform::CUDADeviceContext, float>;
template struct GRUUnitFunctor<platform::CUDADeviceContext, double>;
template struct GRUUnitGradFunctor<platform::CUDADeviceContext, float>;
template struct GRUUnitGradFunctor<platform::CUDADeviceContext, double>;
7 years ago
} // namespace math
} // namespace operators
} // namespace paddle