You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/contrib/mixed_precision/fp16_utils.py

355 lines
14 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
from ... import core
from ... import layers
def _rename_arg(op, old_name, new_name):
"""
If an op has old_name input and output, rename these input
args new_name.
Args:
op (Operator): Current operator.
old_name (str): The old name of input args.
new_name (str): The new name of input args.
"""
op_desc = op.desc
if isinstance(op_desc, tuple):
op_desc = op_desc[0]
op_desc._rename_input(old_name, new_name)
op_desc._rename_output(old_name, new_name)
def _dtype_to_str(dtype):
"""
Convert specific variable type to its corresponding string.
Args:
dtype (VarType): Variable type.
"""
if dtype == core.VarDesc.VarType.FP16:
return 'fp16'
else:
return 'fp32'
def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
"""
Insert cast op and rename args of input and output.
Args:
block (Program): The block in which the operator is.
op (Operator): The operator to insert cast op.
idx (int): The index of current operator.
src_dtype (VarType): The input variable dtype of cast op.
dest_dtype (VarType): The output variable dtype of cast op.
Returns:
num_cast_op (int): The number of cast ops that have been inserted.
"""
num_cast_ops = 0
valid_types = [
core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.SELECTED_ROWS,
core.VarDesc.VarType.LOD_TENSOR_ARRAY
]
for in_name in op.input_names:
if src_dtype == core.VarDesc.VarType.FP32 and op.type == 'batch_norm':
if in_name != 'X':
continue
for in_var_name in op.input(in_name):
in_var = block.var(in_var_name)
if in_var.type not in valid_types:
continue
if in_var.dtype == src_dtype:
cast_name = in_var.name + '.cast_' + _dtype_to_str(dest_dtype)
out_var = block.vars.get(cast_name)
if out_var is None or out_var.dtype != dest_dtype:
out_var = block.create_var(
name=cast_name,
dtype=dest_dtype,
persistable=False,
stop_gradient=False)
block._insert_op(
idx,
type="cast",
inputs={"X": in_var},
outputs={"Out": out_var},
attrs={
"in_dtype": in_var.dtype,
"out_dtype": out_var.dtype
})
num_cast_ops += 1
_rename_arg(op, in_var.name, out_var.name)
else:
if op.has_attr('in_dtype'):
op._set_attr('in_dtype', dest_dtype)
if src_dtype == core.VarDesc.VarType.FP32:
for out_name in op.output_names:
if op.type == 'batch_norm' and out_name != 'Y':
continue
for out_var_name in op.output(out_name):
out_var = block.var(out_var_name)
if out_var.type not in valid_types:
continue
if out_var.dtype == core.VarDesc.VarType.FP32:
out_var.desc.set_dtype(core.VarDesc.VarType.FP16)
if op.has_attr('out_dtype'):
op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
return num_cast_ops
def find_true_prev_op(ops, cur_op, var_name):
"""
Find the true prev op that outputs var_name variable.
Args:
ops (list): A list of ops.
cur_op (Operator): Current operator which has var_name variable.
var_name (string): Variable name.
"""
prev_op = []
for op in ops:
if op == cur_op:
break
for out_name in op.output_names:
for out_var_name in op.output(out_name):
if out_var_name == var_name:
prev_op.append(op)
if prev_op:
if not len(prev_op) == 1:
raise ValueError("There must be only one previous op "
"that outputs {0} variable".format(var_name))
else:
return prev_op[0]
return None
def _is_in_black_varnames(op, amp_lists):
for in_name in op.input_arg_names:
if in_name in amp_lists.black_varnames:
return True
for out_name in op.output_arg_names:
if out_name in amp_lists.black_varnames:
return True
return False
def rewrite_program(main_prog, amp_lists):
"""
Traverse all ops in current block and insert cast op according to
which set current op belongs to.
1. When an op belongs to the black list, add it to black set
2. When an op belongs to the white list, add it to white set
3. When an op belongs to the gray list. If one
of its inputs is the output of black set op or black list op,
add it to black set. If all of its previous ops are not black
op and one of its inputs is the output of white set op or
white list op, add it to white set.
4. When an op isn't in the lists, add it to black op set.
5. Add necessary cast ops to make sure that black set op will be
computed in fp32 mode, while white set op will be computed in
fp16 mode.
Args:
main_prog (Program): The main program for training.
"""
block = main_prog.global_block()
ops = block.ops
white_op_set = set()
black_op_set = set()
for op in ops:
if amp_lists.black_varnames is not None and _is_in_black_varnames(
op, amp_lists):
black_op_set.add(op)
continue
if op.type in amp_lists.black_list:
black_op_set.add(op)
elif op.type in amp_lists.white_list:
white_op_set.add(op)
elif op.type in amp_lists.gray_list:
is_black_op = False
is_white_op = False
for in_name in op.input_names:
# if this op has inputs
if in_name:
for in_var_name in op.input(in_name):
in_var = block.var(in_var_name)
# this in_var isn't the output of other op
if in_var.op is None:
continue
elif in_var.op is op:
prev_op = find_true_prev_op(ops, op, in_var_name)
if prev_op is None:
continue
else:
prev_op = in_var.op
# if it's one of inputs
if prev_op in black_op_set or \
prev_op.type in amp_lists.black_list:
is_black_op = True
elif prev_op in white_op_set or \
prev_op.type in amp_lists.white_list:
is_white_op = True
if is_black_op:
black_op_set.add(op)
elif is_white_op:
white_op_set.add(op)
else:
pass
else:
# For numerical safe, we apply fp32 computation on ops that
# are not determined which list they should stay.
black_op_set.add(op)
idx = 0
while idx < len(ops):
op = ops[idx]
num_cast_ops = 0
if op in black_op_set:
num_cast_ops = _insert_cast_op(block, op, idx,
core.VarDesc.VarType.FP16,
core.VarDesc.VarType.FP32)
elif op in white_op_set:
num_cast_ops = _insert_cast_op(block, op, idx,
core.VarDesc.VarType.FP32,
core.VarDesc.VarType.FP16)
else:
pass
idx += num_cast_ops + 1
def update_role_var_grad(main_prog, params_grads):
"""
Update op_role_var attr for some ops to make sure the gradients
transferred across GPUs is FP16.
1. Check whether the op that outputs gradient is cast or not.
2. If op is cast and gradient is FP32, remove the op_role_var
and find the prev op which outputs FP16 gradient
3. Update the op_role_var of the prev op.
Args:
main_prog (Program): The main program for training.
params_grads (list): A list of params and grads.
"""
block = main_prog.global_block()
BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward
OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
for p, g in params_grads:
op = g.op
if g.dtype == core.VarDesc.VarType.FP32 and op.type == 'cast':
role = op.attr('op_role')
if role & int(BACKWARD) and op.has_attr('op_role_var'):
op.desc.remove_attr("op_role_var")
else:
raise ValueError("The cast op {0} must be in BACKWARD role "
"and have op_role_var attr.".format(op))
fp16_grad_name = op.input(op.input_names[0])[0]
op_for_fp16_grad = find_true_prev_op(block.ops, op, fp16_grad_name)
op_role_var_attr_name = \
core.op_proto_and_checker_maker.kOpRoleVarAttrName()
attr_val = [p.name, fp16_grad_name]
if op_for_fp16_grad.has_attr(op_role_var_attr_name):
attr_val.extend(op_for_fp16_grad.attr(op_role_var_attr_name))
op_for_fp16_grad._set_attr(op_role_var_attr_name, attr_val)
# Maximize the all_reduce overlap, and perform the cast
# operation after gradients transfer.
op._set_attr('op_role', OPTIMIZE)
def update_loss_scaling(is_overall_finite, prev_loss_scaling, num_good_steps,
num_bad_steps, incr_every_n_steps,
decr_every_n_nan_or_inf, incr_ratio, decr_ratio):
"""
Update loss scaling according to overall gradients. If all gradients is
finite after incr_every_n_steps, loss scaling will increase by incr_ratio.
Otherwise, loss scaling will decrease by decr_ratio after
decr_every_n_nan_or_inf steps and each step some gradients are infinite.
Args:
is_overall_finite (Variable): A boolean variable indicates whether
all gradients are finite.
prev_loss_scaling (Variable): Previous loss scaling.
num_good_steps (Variable): A variable accumulates good steps in which
all gradients are finite.
num_bad_steps (Variable): A variable accumulates bad steps in which
some gradients are infinite.
incr_every_n_steps (Variable): A variable represents increasing loss
scaling every n consecutive steps with
finite gradients.
decr_every_n_nan_or_inf (Variable): A variable represents decreasing
loss scaling every n accumulated
steps with nan or inf gradients.
incr_ratio(float): The multiplier to use when increasing the loss
scaling.
decr_ratio(float): The less-than-one-multiplier to use when decreasing
loss scaling.
"""
zero_steps = layers.fill_constant(shape=[1], dtype='int32', value=0)
with layers.Switch() as switch:
with switch.case(is_overall_finite):
should_incr_loss_scaling = layers.less_than(incr_every_n_steps,
num_good_steps + 1)
with layers.Switch() as switch1:
with switch1.case(should_incr_loss_scaling):
new_loss_scaling = prev_loss_scaling * incr_ratio
loss_scaling_is_finite = layers.isfinite(new_loss_scaling)
with layers.Switch() as switch2:
with switch2.case(loss_scaling_is_finite):
layers.assign(new_loss_scaling, prev_loss_scaling)
with switch2.default():
pass
layers.assign(zero_steps, num_good_steps)
layers.assign(zero_steps, num_bad_steps)
with switch1.default():
layers.increment(num_good_steps)
layers.assign(zero_steps, num_bad_steps)
with switch.default():
should_decr_loss_scaling = layers.less_than(decr_every_n_nan_or_inf,
num_bad_steps + 1)
with layers.Switch() as switch3:
with switch3.case(should_decr_loss_scaling):
new_loss_scaling = prev_loss_scaling * decr_ratio
static_loss_scaling = \
layers.fill_constant(shape=[1],
dtype='float32',
value=1.0)
less_than_one = layers.less_than(new_loss_scaling,
static_loss_scaling)
with layers.Switch() as switch4:
with switch4.case(less_than_one):
layers.assign(static_loss_scaling,
prev_loss_scaling)
with switch4.default():
layers.assign(new_loss_scaling, prev_loss_scaling)
layers.assign(zero_steps, num_good_steps)
layers.assign(zero_steps, num_bad_steps)
with switch3.default():
layers.assign(zero_steps, num_good_steps)
layers.increment(num_bad_steps)