|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from six.moves import xrange
|
|
|
|
from datetime import datetime
|
|
|
|
import math
|
|
|
|
import time
|
|
|
|
|
|
|
|
import tensorflow.python.platform
|
|
|
|
import tensorflow as tf
|
|
|
|
|
|
|
|
FLAGS = tf.app.flags.FLAGS
|
|
|
|
|
|
|
|
tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
|
|
|
|
tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
|
|
|
|
tf.app.flags.DEFINE_boolean('forward_only', False,
|
|
|
|
"""Only run the forward pass.""")
|
|
|
|
tf.app.flags.DEFINE_boolean('forward_backward_only', False,
|
|
|
|
"""Only run the forward-forward pass.""")
|
|
|
|
tf.app.flags.DEFINE_string('data_format', 'NCHW',
|
|
|
|
"""The data format for Convnet operations.
|
|
|
|
Can be either NHWC or NCHW.
|
|
|
|
""")
|
|
|
|
tf.app.flags.DEFINE_boolean('log_device_placement', False,
|
|
|
|
"""Whether to log device placement.""")
|
|
|
|
|
|
|
|
parameters = []
|
|
|
|
|
|
|
|
conv_counter = 1
|
|
|
|
pool_counter = 1
|
|
|
|
affine_counter = 1
|
|
|
|
|
|
|
|
|
|
|
|
def _conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.0005):
|
|
|
|
global conv_counter
|
|
|
|
global parameters
|
|
|
|
name = 'conv' + str(conv_counter)
|
|
|
|
conv_counter += 1
|
|
|
|
with tf.name_scope(name) as scope:
|
|
|
|
kernel = tf.Variable(
|
|
|
|
tf.truncated_normal(
|
|
|
|
[kH, kW, nIn, nOut], dtype=tf.float32, stddev=1e-1),
|
|
|
|
name='weights')
|
|
|
|
|
|
|
|
if wd is not None and wd > 0:
|
|
|
|
weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
|
|
|
|
tf.add_to_collection('losses', weight_decay)
|
|
|
|
|
|
|
|
if FLAGS.data_format == 'NCHW':
|
|
|
|
strides = [1, 1, dH, dW]
|
|
|
|
else:
|
|
|
|
strides = [1, dH, dW, 1]
|
|
|
|
conv = tf.nn.conv2d(
|
|
|
|
inpOp,
|
|
|
|
kernel,
|
|
|
|
strides,
|
|
|
|
padding=padType,
|
|
|
|
data_format=FLAGS.data_format)
|
|
|
|
biases = tf.Variable(
|
|
|
|
tf.constant(
|
|
|
|
0.0, shape=[nOut], dtype=tf.float32),
|
|
|
|
trainable=True,
|
|
|
|
name='biases')
|
|
|
|
bias = tf.reshape(
|
|
|
|
tf.nn.bias_add(
|
|
|
|
conv, biases, data_format=FLAGS.data_format),
|
|
|
|
conv.get_shape())
|
|
|
|
conv1 = tf.nn.relu(bias, name=scope)
|
|
|
|
parameters += [kernel, biases]
|
|
|
|
return conv1
|
|
|
|
|
|
|
|
|
|
|
|
def _affine(inpOp, nIn, nOut, act=True, wd=0.0005):
|
|
|
|
global affine_counter
|
|
|
|
global parameters
|
|
|
|
name = 'affine' + str(affine_counter)
|
|
|
|
affine_counter += 1
|
|
|
|
with tf.name_scope(name) as scope:
|
|
|
|
kernel = tf.Variable(
|
|
|
|
tf.truncated_normal(
|
|
|
|
[nIn, nOut], dtype=tf.float32, stddev=1e-1),
|
|
|
|
name='weights')
|
|
|
|
|
|
|
|
if wd is not None and wd > 0:
|
|
|
|
weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
|
|
|
|
tf.add_to_collection('losses', weight_decay)
|
|
|
|
|
|
|
|
biases = tf.Variable(
|
|
|
|
tf.constant(
|
|
|
|
0.0, shape=[nOut], dtype=tf.float32),
|
|
|
|
trainable=True,
|
|
|
|
name='biases')
|
|
|
|
affine1 = tf.nn.relu_layer(
|
|
|
|
inpOp, kernel, biases,
|
|
|
|
name=name) if act else tf.matmul(inpOp, kernel) + biases
|
|
|
|
parameters += [kernel, biases]
|
|
|
|
return affine1
|
|
|
|
|
|
|
|
|
|
|
|
def _mpool(inpOp, kH, kW, dH, dW, padding):
|
|
|
|
global pool_counter
|
|
|
|
global parameters
|
|
|
|
name = 'pool' + str(pool_counter)
|
|
|
|
pool_counter += 1
|
|
|
|
if FLAGS.data_format == 'NCHW':
|
|
|
|
ksize = [1, 1, kH, kW]
|
|
|
|
strides = [1, 1, dH, dW]
|
|
|
|
else:
|
|
|
|
ksize = [1, kH, kW, 1]
|
|
|
|
strides = [1, dH, dW, 1]
|
|
|
|
return tf.nn.max_pool(
|
|
|
|
inpOp,
|
|
|
|
ksize=ksize,
|
|
|
|
strides=strides,
|
|
|
|
padding=padding,
|
|
|
|
data_format=FLAGS.data_format,
|
|
|
|
name=name)
|
|
|
|
|
|
|
|
|
|
|
|
def _apool(inpOp, kH, kW, dH, dW, padding):
|
|
|
|
global pool_counter
|
|
|
|
global parameters
|
|
|
|
name = 'pool' + str(pool_counter)
|
|
|
|
pool_counter += 1
|
|
|
|
if FLAGS.data_format == 'NCHW':
|
|
|
|
ksize = [1, 1, kH, kW]
|
|
|
|
strides = [1, 1, dH, dW]
|
|
|
|
else:
|
|
|
|
ksize = [1, kH, kW, 1]
|
|
|
|
strides = [1, dH, dW, 1]
|
|
|
|
return tf.nn.avg_pool(
|
|
|
|
inpOp,
|
|
|
|
ksize=ksize,
|
|
|
|
strides=strides,
|
|
|
|
padding=padding,
|
|
|
|
data_format=FLAGS.data_format,
|
|
|
|
name=name)
|
|
|
|
|
|
|
|
|
|
|
|
def _inception(inp, inSize, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2):
|
|
|
|
conv1 = _conv(inp, inSize, o1s, 1, 1, 1, 1, 'VALID')
|
|
|
|
|
|
|
|
conv3_ = _conv(inp, inSize, o2s1, 1, 1, 1, 1, 'VALID')
|
|
|
|
conv3 = _conv(conv3_, o2s1, o2s2, 3, 3, 1, 1, 'SAME')
|
|
|
|
|
|
|
|
conv5_ = _conv(inp, inSize, o3s1, 1, 1, 1, 1, 'VALID')
|
|
|
|
conv5 = _conv(conv5_, o3s1, o3s2, 5, 5, 1, 1, 'SAME')
|
|
|
|
|
|
|
|
pool_ = _mpool(inp, o4s1, o4s1, 1, 1, 'SAME')
|
|
|
|
pool = _conv(pool_, inSize, o4s2, 1, 1, 1, 1, 'VALID')
|
|
|
|
|
|
|
|
if FLAGS.data_format == 'NCHW':
|
|
|
|
channel_dim = 1
|
|
|
|
else:
|
|
|
|
channel_dim = 3
|
|
|
|
incept = tf.concat(channel_dim, [conv1, conv3, conv5, pool])
|
|
|
|
return incept
|
|
|
|
|
|
|
|
|
|
|
|
def loss(logits, labels):
|
|
|
|
batch_size = tf.size(labels)
|
|
|
|
labels = tf.expand_dims(labels, 1)
|
|
|
|
indices = tf.expand_dims(tf.range(0, batch_size, 1), 1)
|
|
|
|
concated = tf.concat(1, [indices, labels])
|
|
|
|
onehot_labels = tf.sparse_to_dense(concated,
|
|
|
|
tf.pack([batch_size, 1000]), 1.0, 0.0)
|
|
|
|
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
|
|
|
|
logits, onehot_labels, name='xentropy')
|
|
|
|
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
|
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
|
|
def inference(images):
|
|
|
|
# stage 1
|
|
|
|
conv1 = _conv(images, 3, 64, 7, 7, 2, 2, 'SAME')
|
|
|
|
pool1 = _mpool(conv1, 3, 3, 2, 2, 'SAME')
|
|
|
|
# stage 2
|
|
|
|
conv2 = _conv(pool1, 64, 64, 1, 1, 1, 1, 'VALID')
|
|
|
|
conv3 = _conv(conv2, 64, 192, 3, 3, 1, 1, 'SAME')
|
|
|
|
pool3 = _mpool(conv3, 3, 3, 2, 2, 'SAME')
|
|
|
|
|
|
|
|
# stage 3
|
|
|
|
incept3a = _inception(pool3, 192, 64, 96, 128, 16, 32, 3, 32)
|
|
|
|
incept3b = _inception(incept3a, 256, 128, 128, 192, 32, 96, 3, 64)
|
|
|
|
pool4 = _mpool(incept3b, 3, 3, 2, 2, 'SAME')
|
|
|
|
|
|
|
|
# stage 4
|
|
|
|
incept4a = _inception(pool4, 480, 192, 96, 208, 16, 48, 3, 64)
|
|
|
|
incept4b = _inception(incept4a, 512, 160, 112, 224, 24, 64, 3, 64)
|
|
|
|
incept4c = _inception(incept4b, 512, 128, 128, 256, 24, 64, 3, 64)
|
|
|
|
incept4d = _inception(incept4c, 512, 112, 144, 288, 32, 64, 3, 64)
|
|
|
|
incept4e = _inception(incept4d, 528, 256, 160, 320, 32, 128, 3, 128)
|
|
|
|
pool5 = _mpool(incept4e, 3, 3, 2, 2, 'SAME')
|
|
|
|
|
|
|
|
# stage 5
|
|
|
|
incept5a = _inception(pool5, 832, 256, 160, 320, 32, 128, 3, 128)
|
|
|
|
incept5b = _inception(incept5a, 832, 384, 192, 384, 48, 128, 3, 128)
|
|
|
|
pool6 = _apool(incept5b, 7, 7, 1, 1, 'VALID')
|
|
|
|
|
|
|
|
# output 1
|
|
|
|
resh1 = tf.reshape(pool6, [-1, 1024])
|
|
|
|
drop = tf.nn.dropout(resh1, 0.4)
|
|
|
|
affn1 = _affine(resh1, 1024, 1000, act=False)
|
|
|
|
|
|
|
|
return affn1
|
|
|
|
|
|
|
|
|
|
|
|
def time_tensorflow_run(session, target, info_string):
|
|
|
|
num_steps_burn_in = 10
|
|
|
|
total_duration = 0.0
|
|
|
|
total_duration_squared = 0.0
|
|
|
|
if not isinstance(target, list):
|
|
|
|
target = [target]
|
|
|
|
target_op = tf.group(*target)
|
|
|
|
for i in range(FLAGS.num_batches + num_steps_burn_in):
|
|
|
|
start_time = time.time()
|
|
|
|
_ = session.run(target_op)
|
|
|
|
duration = time.time() - start_time
|
|
|
|
if i > num_steps_burn_in:
|
|
|
|
if not i % 10:
|
|
|
|
print('%s: step %d, duration = %.3f' %
|
|
|
|
(datetime.now(), i - num_steps_burn_in, duration))
|
|
|
|
total_duration += duration
|
|
|
|
total_duration_squared += duration * duration
|
|
|
|
mn = total_duration / FLAGS.num_batches
|
|
|
|
vr = total_duration_squared / FLAGS.num_batches - mn * mn
|
|
|
|
sd = math.sqrt(vr)
|
|
|
|
print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
|
|
|
|
(datetime.now(), info_string, FLAGS.num_batches, mn, sd))
|
|
|
|
|
|
|
|
|
|
|
|
def run_benchmark():
|
|
|
|
global parameters
|
|
|
|
with tf.Graph().as_default():
|
|
|
|
# Generate some dummy images.
|
|
|
|
image_size = 224
|
|
|
|
if FLAGS.data_format == 'NCHW':
|
|
|
|
image_shape = [FLAGS.batch_size, 3, image_size, image_size]
|
|
|
|
else:
|
|
|
|
image_shape = [FLAGS.batch_size, image_size, image_size, 3]
|
|
|
|
|
|
|
|
images = tf.get_variable(
|
|
|
|
'image',
|
|
|
|
image_shape,
|
|
|
|
initializer=tf.truncated_normal_initializer(
|
|
|
|
stddev=0.1, dtype=tf.float32),
|
|
|
|
dtype=tf.float32,
|
|
|
|
trainable=False)
|
|
|
|
|
|
|
|
labels = tf.get_variable(
|
|
|
|
'label', [FLAGS.batch_size],
|
|
|
|
initializer=tf.constant_initializer(1),
|
|
|
|
dtype=tf.int32,
|
|
|
|
trainable=False)
|
|
|
|
|
|
|
|
# Build a Graph that computes the logits predictions from the
|
|
|
|
# inference model.
|
|
|
|
last_layer = inference(images)
|
|
|
|
|
|
|
|
objective = loss(last_layer, labels)
|
|
|
|
|
|
|
|
# Compute gradients.
|
|
|
|
# opt = tf.train.GradientDescentOptimizer(0.001)
|
|
|
|
opt = tf.train.MomentumOptimizer(0.001, 0.9)
|
|
|
|
grads = opt.compute_gradients(objective)
|
|
|
|
global_step = tf.get_variable(
|
|
|
|
'global_step', [],
|
|
|
|
initializer=tf.constant_initializer(
|
|
|
|
0.0, dtype=tf.float32),
|
|
|
|
trainable=False,
|
|
|
|
dtype=tf.float32)
|
|
|
|
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
|
|
|
|
|
|
|
|
# Track the moving averages of all trainable variables.
|
|
|
|
variable_averages = tf.train.ExponentialMovingAverage(0.9, global_step)
|
|
|
|
variables_averages_op = variable_averages.apply(tf.trainable_variables(
|
|
|
|
))
|
|
|
|
|
|
|
|
# Build an initialization operation.
|
|
|
|
init = tf.initialize_all_variables()
|
|
|
|
|
|
|
|
# Start running operations on the Graph.
|
|
|
|
sess = tf.Session(config=tf.ConfigProto(
|
|
|
|
allow_soft_placement=True,
|
|
|
|
log_device_placement=FLAGS.log_device_placement))
|
|
|
|
sess.run(init)
|
|
|
|
|
|
|
|
run_forward = True
|
|
|
|
run_forward_backward = True
|
|
|
|
if FLAGS.forward_only and FLAGS.forward_backward_only:
|
|
|
|
raise ValueError("Cannot specify --forward_only and "
|
|
|
|
"--forward_backward_only at the same time.")
|
|
|
|
if FLAGS.forward_only:
|
|
|
|
run_forward_backward = False
|
|
|
|
elif FLAGS.forward_backward_only:
|
|
|
|
run_forward = False
|
|
|
|
|
|
|
|
if run_forward:
|
|
|
|
# Run the forward benchmark.
|
|
|
|
time_tensorflow_run(sess, last_layer, "Forward")
|
|
|
|
|
|
|
|
if run_forward_backward:
|
|
|
|
with tf.control_dependencies(
|
|
|
|
[apply_gradient_op, variables_averages_op]):
|
|
|
|
train_op = tf.no_op(name='train')
|
|
|
|
time_tensorflow_run(sess, [train_op, objective], "Forward-backward")
|
|
|
|
|
|
|
|
|
|
|
|
def main(_):
|
|
|
|
run_benchmark()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
tf.app.run()
|