You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/optimizer/parameter_optimizer_test.cpp

110 lines
2.7 KiB

#include "parameter_optimizer.h"
#include <cmath>
#include <tuple>
#include <vector>
#include "adadelta_optimizer.h"
#include "adagrad_optimizer.h"
#include "adam_optimizer.h"
#include "gtest/gtest.h"
#include "sgd_optimizer.h"
using namespace paddle;
using namespace paddle::optimizer;
Tensor* fill_n_Tensor(size_t size) {
real* ptr = new real[size];
Tensor* param = new Tensor(ptr, size);
Tensor& p = *param;
for (auto i = 0; i < p.size(); ++i) {
p[i] = (float)rand() / (float)RAND_MAX;
}
return param;
}
Tensor* fix_n_Tensor(size_t size) {
real* ptr = new real[size];
Tensor* param = new Tensor(ptr, size);
Tensor& p = *param;
for (auto i = 0; i < p.size(); ++i) {
p[i] = i;
}
return param;
}
class OptimizerTest : public testing::Test {
public:
// init tensor shape
const size_t size = 5;
virtual void SetUp() {
create_sgd();
create_adam();
}
virtual void TearDown() {}
void create_sgd() {
config.set_optimizer(OptimizerConfig::SGD);
config.mutable_sgd()->set_momentum(0.0);
config.mutable_sgd()->set_decay(0.0);
config.mutable_sgd()->set_nesterov(false);
config.set_lr_policy(OptimizerConfig::ConstLr);
config.mutable_const_lr()->set_learning_rate(0.1);
ParameterOptimizer* opt =
ParameterOptimizer::Create(config.SerializeAsString());
opts.push_back(opt);
}
void create_adam() {
config.set_optimizer(OptimizerConfig::Adam);
config.mutable_adam()->set_beta_1(0.9);
config.mutable_adam()->set_beta_2(0.1);
config.mutable_adam()->set_epsilon(1e-3);
config.mutable_adam()->set_decay(0.0);
config.set_lr_policy(OptimizerConfig::ConstLr);
config.mutable_const_lr()->set_learning_rate(0.1);
ParameterOptimizer* opt =
ParameterOptimizer::Create(config.SerializeAsString());
opts.push_back(opt);
}
void test_set_weight() {
Tensor* p = fill_n_Tensor(size);
for (size_t i = 0; i < opts.size(); ++i) {
opts[i]->set_weight(p);
}
}
void test_get_weight() {
Tensor* p = fix_n_Tensor(size);
for (size_t i = 0; i < opts.size(); ++i) {
opts[i]->set_weight(p);
}
for (size_t i = 0; i < opts.size(); ++i) {
real* newp = (real*)opts[i]->get_weight();
for (size_t j = 0; j < size; ++j) {
EXPECT_EQ(newp[j], (*p)[j]);
}
}
}
void test_update() {
Tensor* g = fix_n_Tensor(size);
for (size_t i = 0; i < opts.size(); ++i) {
opts[i]->Update(g);
}
}
private:
std::vector<ParameterOptimizer*> opts;
OptimizerConfig config;
};
TEST_F(OptimizerTest, test_set_get_weight) {
test_set_weight();
test_get_weight();
}
TEST_F(OptimizerTest, test_update) { test_update(); }
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}