You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/math/tests/TensorCheck.h

114 lines
2.6 KiB

/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cmath>
#include <gtest/gtest.h>
#include "paddle/math/Matrix.h"
using namespace paddle; // NOLINT
using namespace std; // NOLINT
namespace autotest {
class CheckEqual {
public:
inline int operator()(real a, real b) {
if (a != b) {
return 1;
}
return 0;
}
};
class CheckWithErr {
public:
CheckWithErr() {
#ifndef PADDLE_TYPE_DOUBLE
err_ = 1e-5;
#else
err_ = 1e-10;
#endif
}
inline int operator()(real a, real b) {
if (std::fabs(a - b) > err_) {
if ((std::fabs(a - b) / std::fabs(a)) > (err_ / 10.0f)) {
return 1;
}
}
return 0;
}
private:
real err_;
};
template<typename Check>
void TensorCheck(Check op, const CpuMatrix& matrix1, const CpuMatrix& matrix2) {
CHECK(matrix1.getHeight() == matrix2.getHeight());
CHECK(matrix1.getWidth() == matrix2.getWidth());
int height = matrix1.getHeight();
int width = matrix1.getWidth();
const real* data1 = matrix1.getData();
const real* data2 = matrix2.getData();
int count = 0;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
real a = data1[i * width + j];
real b = data2[i * width + j];
count += op(a, b);
}
}
EXPECT_EQ(count, 0) << "There are " << count << " different element.";
}
template <typename Tensor>
class CopyToCpu;
template <>
class CopyToCpu<CpuMatrix> {
public:
explicit CopyToCpu(const CpuMatrix& arg) : arg_(arg) {}
const CpuMatrix& copiedArg() const { return arg_; }
private:
const CpuMatrix& arg_;
};
template <>
class CopyToCpu<GpuMatrix> {
public:
explicit CopyToCpu(const GpuMatrix& arg)
: arg_(arg.getHeight(), arg.getWidth()) {
arg_.copyFrom(arg);
}
CpuMatrix& copiedArg() { return arg_; }
private:
CpuMatrix arg_;
};
template<typename Tensor1, typename Tensor2>
extern void TensorCheckErr(const Tensor1& tensor1, const Tensor2& tensor2) {
TensorCheck(
CheckWithErr(),
CopyToCpu<Tensor1>(tensor1).copiedArg(),
CopyToCpu<Tensor2>(tensor2).copiedArg());
}
} // namespace autotest