|
|
|
@ -25,12 +25,42 @@ TEST(OpConverter, ConvertBlock) {
|
|
|
|
|
framework::ProgramDesc prog;
|
|
|
|
|
auto* block = prog.MutableBlock(0);
|
|
|
|
|
auto* conv2d_op = block->AppendOp();
|
|
|
|
|
|
|
|
|
|
// init trt engine
|
|
|
|
|
cudaStream_t stream_;
|
|
|
|
|
std::unique_ptr<TensorRTEngine> engine_;
|
|
|
|
|
engine_.reset(new TensorRTEngine(5, 1 << 15, &stream_));
|
|
|
|
|
engine_->InitNetwork();
|
|
|
|
|
PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream_), 0);
|
|
|
|
|
|
|
|
|
|
engine_->DeclareInput("conv2d-X", nvinfer1::DataType::kFLOAT,
|
|
|
|
|
nvinfer1::Dims3(2, 5, 5));
|
|
|
|
|
|
|
|
|
|
conv2d_op->SetType("conv2d");
|
|
|
|
|
conv2d_op->SetInput("Input", {"conv2d-X"});
|
|
|
|
|
conv2d_op->SetInput("Filter", {"conv2d-Y"});
|
|
|
|
|
conv2d_op->SetOutput("Output", {"conv2d-Out"});
|
|
|
|
|
|
|
|
|
|
OpConverter converter;
|
|
|
|
|
const std::vector<int> strides({1, 1});
|
|
|
|
|
const std::vector<int> paddings({1, 1});
|
|
|
|
|
const std::vector<int> dilations({1, 1});
|
|
|
|
|
const int groups = 1;
|
|
|
|
|
|
|
|
|
|
conv2d_op->SetAttr("strides", strides);
|
|
|
|
|
conv2d_op->SetAttr("paddings", paddings);
|
|
|
|
|
conv2d_op->SetAttr("dilations", dilations);
|
|
|
|
|
conv2d_op->SetAttr("groups", groups);
|
|
|
|
|
|
|
|
|
|
// init scope
|
|
|
|
|
framework::Scope scope;
|
|
|
|
|
converter.ConvertBlock(*block->Proto(), {}, scope,
|
|
|
|
|
nullptr /*TensorRTEngine*/);
|
|
|
|
|
std::vector<int> dim_vec = {3, 2, 3, 3};
|
|
|
|
|
auto* x = scope.Var("conv2d-Y");
|
|
|
|
|
auto* x_tensor = x->GetMutable<framework::LoDTensor>();
|
|
|
|
|
x_tensor->Resize(framework::make_ddim(dim_vec));
|
|
|
|
|
|
|
|
|
|
OpConverter converter;
|
|
|
|
|
converter.ConvertBlock(*block->Proto(), {"conv2d-Y"}, scope,
|
|
|
|
|
engine_.get() /*TensorRTEngine*/);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace tensorrt
|
|
|
|
|