Add api of constant in paddle.nn.initializer (#27786)
* Add api of constant in paddle.nn.initializer * Add api of constant in paddle.nn.initializer * Add api of constant in paddle.nn.initializer * Add api of constant in paddle.nn.initializer * Add api of constant in paddle.nn.initializer * Add api of constant in paddle.nn.initializer * Add api of constant in paddle.nn.initializermy_2.0rc
parent
b8d2a021f0
commit
00d401ec1a
@ -0,0 +1,108 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.framework as framework
|
||||
import paddle.nn.initializer as initializer
|
||||
from paddle.fluid.core import VarDesc
|
||||
|
||||
DELTA = 0.00001
|
||||
|
||||
|
||||
def check_cast_op(op):
|
||||
return op.type == 'cast' and \
|
||||
op.attr('in_dtype') == VarDesc.VarType.FP32 and \
|
||||
op.attr('out_dtype') == VarDesc.VarType.FP16
|
||||
|
||||
|
||||
class TestConstantInitializer(unittest.TestCase):
|
||||
def static_test_constant_initializer_common(self,
|
||||
init_inst,
|
||||
dtype="float32",
|
||||
value_target=0.0):
|
||||
paddle.enable_static()
|
||||
program = framework.Program()
|
||||
block = program.global_block()
|
||||
for _ in range(2):
|
||||
block.create_parameter(
|
||||
dtype=dtype,
|
||||
shape=[5, 10],
|
||||
lod_level=0,
|
||||
name="param",
|
||||
initializer=init_inst)
|
||||
num_ops = 2 if dtype == "float16" else 1
|
||||
self.assertEqual(len(block.ops), num_ops)
|
||||
init_op = block.ops[0]
|
||||
self.assertEqual(init_op.type, 'fill_constant')
|
||||
self.assertAlmostEqual(init_op.attr('value'), value_target, delta=DELTA)
|
||||
paddle.disable_static()
|
||||
return block
|
||||
|
||||
def test_constant_initializer_default_value_static(self, dtype="float32"):
|
||||
"""Test the constant initializer with default value in static graph
|
||||
"""
|
||||
block = self.static_test_constant_initializer_common(
|
||||
init_inst=initializer.Constant(), dtype=dtype, value_target=0.0)
|
||||
return block
|
||||
|
||||
def test_constant_initializer_default_value_dygraph(self, dtype="float32"):
|
||||
"""Test constant initializer with supplied value in dygraph
|
||||
"""
|
||||
with fluid.dygraph.guard():
|
||||
linear = nn.Linear(2, 4, weight_attr=nn.initializer.Constant())
|
||||
mat_target = np.ones((2, 4), dtype=dtype) * 0.0
|
||||
mat_linear = linear.weight.numpy()
|
||||
mismatch = np.sum(
|
||||
(mat_target - mat_linear) * (mat_target - mat_linear))
|
||||
self.assertAlmostEqual(mismatch, 0.0, delta=DELTA)
|
||||
|
||||
def test_constant_initializer_static(self, dtype="float32"):
|
||||
"""Test constant initializer with supplied value in static graph
|
||||
"""
|
||||
block = self.static_test_constant_initializer_common(
|
||||
init_inst=initializer.Constant(2.3), dtype=dtype, value_target=2.3)
|
||||
return block
|
||||
|
||||
def test_constant_initializer_dygraph(self, dtype="float32"):
|
||||
"""Test constant initializer with supplied value in dygraph
|
||||
"""
|
||||
with fluid.dygraph.guard():
|
||||
linear = nn.Linear(
|
||||
2, 4, weight_attr=nn.initializer.Constant(value=2.0))
|
||||
mat_target = np.ones((2, 4), dtype=dtype) * 2.0
|
||||
mat_linear = linear.weight.numpy()
|
||||
mismatch = np.sum(
|
||||
(mat_target - mat_linear) * (mat_target - mat_linear))
|
||||
self.assertAlmostEqual(mismatch, 0.0, delta=DELTA)
|
||||
|
||||
def test_constant_initializer_fp16(self):
|
||||
"""Test constant initializer with float16
|
||||
"""
|
||||
block = self.test_constant_initializer_default_value_static("float16")
|
||||
self.assertTrue(check_cast_op(block.ops[1]))
|
||||
block = self.test_constant_initializer_static("float16")
|
||||
self.assertTrue(check_cast_op(block.ops[1]))
|
||||
self.test_constant_initializer_default_value_dygraph("float16")
|
||||
self.test_constant_initializer_dygraph("float16")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,46 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# TODO: define the initializers of Constant in neural network
|
||||
from ...fluid.initializer import ConstantInitializer
|
||||
|
||||
__all__ = ['Constant']
|
||||
|
||||
|
||||
class Constant(ConstantInitializer):
|
||||
"""Implement the constant initializer.
|
||||
|
||||
Args:
|
||||
value (float32): constant value to initialize the parameter
|
||||
|
||||
Examples:
|
||||
.. code-block:: python
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
data = paddle.rand([30, 10, 2], dtype='float32')
|
||||
linear = nn.Linear(2,
|
||||
4,
|
||||
weight_attr=nn.initializer.Constant(value=2.0))
|
||||
res = linear(data)
|
||||
print(linear.weight.numpy())
|
||||
#result is [[2. 2. 2. 2.],[2. 2. 2. 2.]]
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, value=0.0):
|
||||
if value is None:
|
||||
raise ValueError("value must not be none.")
|
||||
super(Constant, self).__init__(value=value, force_cpu=False)
|
Loading…
Reference in new issue