add the sigmoid, Sigmoid for the api 2.0 (#26171)
Update the sigmoid, Sigmoid layer for the api2.0revert-24895-update_cub
parent
f8ca72013e
commit
00e08ce07b
@ -0,0 +1,107 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.fluid.core as core
|
||||
from op_test import OpTest
|
||||
from scipy.special import expit, erf
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as functional
|
||||
|
||||
|
||||
class TestNNSigmoidAPI(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.init_data()
|
||||
|
||||
def init_data(self):
|
||||
self.x_shape = [10, 15]
|
||||
self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
|
||||
self.y = self.ref_forward(self.x)
|
||||
|
||||
def ref_forward(self, x):
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
def ref_backward(self, y, dy):
|
||||
return dy * y * (1 - y)
|
||||
|
||||
def check_static_api(self, place):
|
||||
paddle.enable_static()
|
||||
main_program = paddle.static.Program()
|
||||
mysigmoid = nn.Sigmoid(name="api_sigmoid")
|
||||
with paddle.static.program_guard(main_program):
|
||||
x = paddle.nn.data(name='x', shape=self.x_shape)
|
||||
x.stop_gradient = False
|
||||
y = mysigmoid(x)
|
||||
fluid.backward.append_backward(paddle.mean(y))
|
||||
exe = paddle.static.Executor(place)
|
||||
out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
|
||||
self.assertTrue(np.allclose(out[0], self.y))
|
||||
self.assertTrue(y.name.startswith("api_sigmoid"))
|
||||
|
||||
def check_dynamic_api(self, place):
|
||||
paddle.disable_static(place)
|
||||
x = paddle.to_variable(self.x)
|
||||
mysigmoid = nn.Sigmoid()
|
||||
y = mysigmoid(x)
|
||||
self.assertTrue(np.allclose(y.numpy(), self.y))
|
||||
|
||||
def test_check_api(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for place in places:
|
||||
self.check_dynamic_api(place)
|
||||
self.check_static_api(place)
|
||||
|
||||
|
||||
class TestNNFunctionalSigmoidAPI(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.init_data()
|
||||
|
||||
def init_data(self):
|
||||
self.x_shape = [10, 15]
|
||||
self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
|
||||
self.y = self.ref_forward(self.x)
|
||||
|
||||
def ref_forward(self, x):
|
||||
return 1 / (1 + np.exp(-x))
|
||||
|
||||
def check_static_api(self, place):
|
||||
paddle.enable_static()
|
||||
main_program = paddle.static.Program()
|
||||
with paddle.static.program_guard(main_program):
|
||||
x = paddle.nn.data(name='x', shape=self.x_shape)
|
||||
y = functional.sigmoid(x, name="api_sigmoid")
|
||||
exe = paddle.static.Executor(fluid.CPUPlace())
|
||||
out = exe.run(main_program, feed={'x': self.x}, fetch_list=[y])
|
||||
self.assertTrue(np.allclose(out[0], self.y))
|
||||
|
||||
def check_dynamic_api(self):
|
||||
paddle.disable_static()
|
||||
x = paddle.to_variable(self.x)
|
||||
y = functional.sigmoid(x)
|
||||
self.assertTrue(np.allclose(y.numpy(), self.y))
|
||||
|
||||
def test_check_api(self):
|
||||
places = [fluid.CPUPlace()]
|
||||
if core.is_compiled_with_cuda():
|
||||
places.append(fluid.CUDAPlace(0))
|
||||
for place in places:
|
||||
self.check_static_api(place)
|
||||
self.check_dynamic_api()
|
Loading…
Reference in new issue