commit
0291c01884
@ -0,0 +1,122 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "Layer.h"
|
||||
#include "NormLayer.h"
|
||||
#include "paddle/math/BaseMatrix.h"
|
||||
#include "paddle/math/Matrix.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
MatrixPtr CrossChannelNormLayer::createSampleMatrix(MatrixPtr data,
|
||||
size_t iter,
|
||||
size_t spatialDim) {
|
||||
return Matrix::create(data->getData() + iter * channels_ * spatialDim,
|
||||
channels_,
|
||||
spatialDim,
|
||||
false,
|
||||
useGpu_);
|
||||
}
|
||||
|
||||
MatrixPtr CrossChannelNormLayer::createSpatialMatrix(MatrixPtr data,
|
||||
size_t iter,
|
||||
size_t spatialDim) {
|
||||
return Matrix::create(
|
||||
data->getData() + iter * spatialDim, 1, spatialDim, false, useGpu_);
|
||||
}
|
||||
|
||||
void CrossChannelNormLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
MatrixPtr inV = getInputValue(0);
|
||||
|
||||
size_t batchSize = inV->getHeight();
|
||||
size_t dataDim = inV->getWidth();
|
||||
CHECK_EQ(getSize(), dataDim);
|
||||
|
||||
reserveOutput(batchSize, dataDim);
|
||||
MatrixPtr outV = getOutputValue();
|
||||
size_t spatialDim = dataDim / channels_;
|
||||
|
||||
Matrix::resizeOrCreate(dataBuffer_, batchSize, dataDim, false, useGpu_);
|
||||
Matrix::resizeOrCreate(spatialBuffer_, 1, spatialDim, false, useGpu_);
|
||||
Matrix::resizeOrCreate(normBuffer_, batchSize, spatialDim, false, useGpu_);
|
||||
normBuffer_->zeroMem();
|
||||
// add eps to avoid overflow
|
||||
normBuffer_->addScalar(*normBuffer_, 1e-6);
|
||||
inV->square2(*dataBuffer_);
|
||||
for (size_t i = 0; i < batchSize; i++) {
|
||||
const MatrixPtr inVTmp = createSampleMatrix(inV, i, spatialDim);
|
||||
const MatrixPtr dataTmp = createSampleMatrix(dataBuffer_, i, spatialDim);
|
||||
MatrixPtr outVTmp = createSampleMatrix(outV, i, spatialDim);
|
||||
MatrixPtr normTmp = createSpatialMatrix(normBuffer_, i, spatialDim);
|
||||
|
||||
// compute norm.
|
||||
spatialBuffer_->sumCols(*dataTmp, 1, 0);
|
||||
spatialBuffer_->sqrt2(*spatialBuffer_);
|
||||
normTmp->copyFrom(*spatialBuffer_);
|
||||
outVTmp->copyFrom(*inVTmp);
|
||||
outVTmp->divRowVector(*spatialBuffer_);
|
||||
// scale the layer.
|
||||
outVTmp->mulColVector(*scale_->getW());
|
||||
}
|
||||
}
|
||||
|
||||
void CrossChannelNormLayer::backward(const UpdateCallback& callback) {
|
||||
MatrixPtr inG = getInputGrad(0);
|
||||
MatrixPtr inV = getInputValue(0);
|
||||
MatrixPtr outG = getOutputGrad();
|
||||
MatrixPtr outV = getOutputValue();
|
||||
|
||||
size_t batchSize = inG->getHeight();
|
||||
size_t dataDim = inG->getWidth();
|
||||
size_t spatialDim = dataDim / channels_;
|
||||
|
||||
dataBuffer_->dotMul(*outG, *outV);
|
||||
Matrix::resizeOrCreate(scaleDiff_, channels_, 1, false, useGpu_);
|
||||
Matrix::resizeOrCreate(channelBuffer_, channels_, 1, false, useGpu_);
|
||||
Matrix::resizeOrCreate(sampleBuffer_, channels_, spatialDim, false, useGpu_);
|
||||
scaleDiff_->zeroMem();
|
||||
for (size_t i = 0; i < batchSize; i++) {
|
||||
MatrixPtr outGTmp = createSampleMatrix(outG, i, spatialDim);
|
||||
const MatrixPtr dataTmp = createSampleMatrix(dataBuffer_, i, spatialDim);
|
||||
const MatrixPtr inVTmp = createSampleMatrix(inV, i, spatialDim);
|
||||
const MatrixPtr inGTmp = createSampleMatrix(inG, i, spatialDim);
|
||||
const MatrixPtr normTmp = createSpatialMatrix(normBuffer_, i, spatialDim);
|
||||
|
||||
channelBuffer_->sumRows(*dataTmp, 1, 0);
|
||||
channelBuffer_->dotDiv(*channelBuffer_, *(scale_->getW()));
|
||||
// store a / scale[i] in scaleDiff_ temporary
|
||||
scaleDiff_->add(*channelBuffer_, 1.);
|
||||
|
||||
sampleBuffer_->dotMul(*inVTmp, *outGTmp);
|
||||
spatialBuffer_->sumCols(*sampleBuffer_, 1., 1.);
|
||||
// scale the grad
|
||||
inGTmp->copyFrom(*inVTmp);
|
||||
inGTmp->mulRowVector(*spatialBuffer_);
|
||||
// divide by square of norm
|
||||
spatialBuffer_->dotMul(*normTmp, *normTmp);
|
||||
inGTmp->divRowVector(*spatialBuffer_);
|
||||
// subtract
|
||||
inGTmp->add(*outGTmp, -1, 1);
|
||||
// divide by norm
|
||||
inGTmp->divRowVector(*normTmp);
|
||||
// scale the diff
|
||||
inGTmp->mulColVector(*scale_->getW());
|
||||
}
|
||||
// updata scale
|
||||
if (scale_->getWGrad()) scale_->getWGrad()->copyFrom(*scaleDiff_);
|
||||
scale_->getParameterPtr()->incUpdate(callback);
|
||||
}
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue