parent
7c8e5c3b63
commit
03799bdbfe
@ -0,0 +1,244 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "FunctionTest.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
template <DeviceType DType1, DeviceType DType2>
|
||||
void forward(Compare2Function<DType1, DType2>& test,
|
||||
const TensorShape& input,
|
||||
const TensorShape& filter,
|
||||
const TensorShape& output) {
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
||||
test.run();
|
||||
}
|
||||
|
||||
template <DeviceType DType1, DeviceType DType2>
|
||||
void backward_input(Compare2Function<DType1, DType2>& test,
|
||||
const TensorShape& input,
|
||||
const TensorShape& filter,
|
||||
const TensorShape& output) {
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
|
||||
test.run();
|
||||
}
|
||||
|
||||
template <DeviceType DType1, DeviceType DType2>
|
||||
void backward_filter(Compare2Function<DType1, DType2>& test,
|
||||
const TensorShape& input,
|
||||
const TensorShape& filter,
|
||||
const TensorShape& output) {
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter), ADD_TO);
|
||||
test.run();
|
||||
}
|
||||
|
||||
template <DeviceType DType1, DeviceType DType2>
|
||||
using Function = void (*)(Compare2Function<DType1, DType2>& test,
|
||||
const TensorShape& input,
|
||||
const TensorShape& filter,
|
||||
const TensorShape& output);
|
||||
|
||||
/**
|
||||
* \brief A basic convolution function test interface.
|
||||
*
|
||||
* \param conv1 type name of convolution function 1.
|
||||
* \param conv2 type name of convolution function 2.
|
||||
* \param function test function, can be one of the forward, backward_input
|
||||
* backward_filter function.
|
||||
* Example:
|
||||
* 1. Compare GemmConv's CPU and GPU implementation:
|
||||
* Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
|
||||
* "GemmConv-CPU", "GemmConv-GPU", forward);
|
||||
*/
|
||||
template <DeviceType DType1, DeviceType DType2>
|
||||
void Convolution(const std::string& conv1,
|
||||
const std::string& conv2,
|
||||
Function<DType1, DType2> function) {
|
||||
for (size_t batchSize : {1, 5}) {
|
||||
for (size_t inputSize : {7, 14, 31}) {
|
||||
for (size_t filterSize : {1, 3, 5}) {
|
||||
for (size_t inputChannels : {3, 16}) {
|
||||
for (size_t outputChannels : {3, 16}) {
|
||||
if (outputChannels < inputChannels) continue;
|
||||
for (size_t stride : {1, 2}) {
|
||||
for (size_t padding : {0, 1}) {
|
||||
if (padding >= filterSize) break;
|
||||
size_t outputSize =
|
||||
(inputSize - filterSize + 2 * padding + stride) / stride;
|
||||
VLOG(3) << " batchSize=" << batchSize
|
||||
<< " inputChannels=" << inputChannels
|
||||
<< " inputHeight=" << inputSize
|
||||
<< " inputWidth=" << inputSize
|
||||
<< " outputChannels=" << outputChannels
|
||||
<< " filterHeight=" << filterSize
|
||||
<< " filterWidth=" << filterSize
|
||||
<< " outputHeight=" << outputSize
|
||||
<< " outputWidth=" << outputSize << " stride=" << stride
|
||||
<< " padding=" << padding;
|
||||
|
||||
std::vector<size_t> paddings = {padding, padding};
|
||||
std::vector<size_t> strides = {stride, stride};
|
||||
Compare2Function<DType1, DType2> test(
|
||||
conv1,
|
||||
conv2,
|
||||
FuncConfig()
|
||||
.set("paddings", paddings)
|
||||
.set("strides", strides)
|
||||
.set("groups", (size_t)1)
|
||||
.set("algo", "auto"));
|
||||
|
||||
TensorShape input{
|
||||
batchSize, inputChannels, inputSize, inputSize};
|
||||
TensorShape filter{
|
||||
outputChannels, inputChannels, filterSize, filterSize};
|
||||
TensorShape output{
|
||||
batchSize, outputChannels, outputSize, outputSize};
|
||||
|
||||
function(test, input, filter, output);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief A convolution function test interface for
|
||||
* image height is not equal image width.
|
||||
*/
|
||||
template <DeviceType DType1, DeviceType DType2>
|
||||
void Convolution2(const std::string& conv1,
|
||||
const std::string& conv2,
|
||||
Function<DType1, DType2> function) {
|
||||
for (size_t batchSize : {4}) {
|
||||
for (size_t inputHeight : {7, 31}) {
|
||||
for (size_t inputWidth : {10, 54}) {
|
||||
for (size_t filterHeight : {1, 5}) {
|
||||
for (size_t filterWidth : {3, 7}) {
|
||||
for (size_t inputChannels : {7}) {
|
||||
for (size_t outputChannels : {7}) {
|
||||
size_t stride = 1;
|
||||
size_t padding = 0;
|
||||
size_t outputHeight =
|
||||
(inputHeight - filterHeight + 2 * padding + stride) /
|
||||
stride;
|
||||
size_t outputWidth =
|
||||
(inputWidth - filterWidth + 2 * padding + stride) / stride;
|
||||
VLOG(3) << " batchSize=" << batchSize
|
||||
<< " inputChannels=" << inputChannels
|
||||
<< " inputHeight=" << inputHeight
|
||||
<< " inputWidth=" << inputWidth
|
||||
<< " outputChannels=" << outputChannels
|
||||
<< " filterHeight=" << filterHeight
|
||||
<< " filterWidth=" << filterWidth
|
||||
<< " outputHeight=" << outputHeight
|
||||
<< " outputWidth=" << outputWidth
|
||||
<< " stride=" << stride << " padding=" << padding;
|
||||
|
||||
std::vector<size_t> paddings = {padding, padding};
|
||||
std::vector<size_t> strides = {stride, stride};
|
||||
Compare2Function<DType1, DType2> test(
|
||||
conv1,
|
||||
conv2,
|
||||
FuncConfig()
|
||||
.set("paddings", paddings)
|
||||
.set("strides", strides)
|
||||
.set("groups", (size_t)1)
|
||||
.set("algo", "auto"));
|
||||
|
||||
TensorShape input{
|
||||
batchSize, inputChannels, inputHeight, inputWidth};
|
||||
TensorShape filter{
|
||||
outputChannels, inputChannels, filterHeight, filterWidth};
|
||||
TensorShape output{
|
||||
batchSize, outputChannels, outputHeight, outputWidth};
|
||||
|
||||
function(test, input, filter, output);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief A convolution function test interface for depthwise convolution.
|
||||
*/
|
||||
template <DeviceType DType1, DeviceType DType2>
|
||||
void DepthwiseConvolution(const std::string& conv1,
|
||||
const std::string& conv2,
|
||||
Function<DType1, DType2> function) {
|
||||
for (size_t batchSize : {1, 32}) {
|
||||
for (size_t inputSize : {7, 14, 54}) {
|
||||
for (size_t filterSize : {3, 4}) {
|
||||
for (size_t inputChannels : {32}) {
|
||||
for (size_t outputChannels : {32, 64}) {
|
||||
for (size_t stride : {1, 2}) {
|
||||
for (size_t padding : {0, 1}) {
|
||||
size_t outputSize =
|
||||
(inputSize - filterSize + 2 * padding + stride) / stride;
|
||||
VLOG(3) << " batchSize=" << batchSize
|
||||
<< " inputChannels=" << inputChannels
|
||||
<< " inputHeight=" << inputSize
|
||||
<< " inputWidth=" << inputSize
|
||||
<< " outputChannels=" << outputChannels
|
||||
<< " filterHeight=" << filterSize
|
||||
<< " filterWidth=" << filterSize
|
||||
<< " outputHeight=" << outputSize
|
||||
<< " outputWidth=" << outputSize << " stride=" << stride
|
||||
<< " padding=" << padding;
|
||||
|
||||
std::vector<size_t> paddings = {padding, padding};
|
||||
std::vector<size_t> strides = {stride, stride};
|
||||
size_t groups = inputChannels;
|
||||
Compare2Function<DType1, DType2> test(
|
||||
conv1,
|
||||
conv2,
|
||||
FuncConfig()
|
||||
.set("paddings", paddings)
|
||||
.set("strides", strides)
|
||||
.set("groups", groups)
|
||||
.set("algo", "auto"));
|
||||
|
||||
TensorShape input{
|
||||
batchSize, inputChannels, inputSize, inputSize};
|
||||
TensorShape filter{groups,
|
||||
outputChannels / groups,
|
||||
inputChannels / groups,
|
||||
filterSize,
|
||||
filterSize};
|
||||
TensorShape output{
|
||||
batchSize, outputChannels, outputSize, outputSize};
|
||||
|
||||
function(test, input, filter, output);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,37 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "ConvOpTest.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
#ifndef PADDLE_ONLY_CPU
|
||||
TEST(DepthwiseConv, Forward) {
|
||||
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
|
||||
"GemmConv-CPU", "DepthwiseConv-GPU", forward);
|
||||
}
|
||||
|
||||
TEST(DepthwiseConv, BackwardInput) {
|
||||
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
|
||||
"GemmConvGradInput-CPU", "DepthwiseConvGradInput-GPU", backward_input);
|
||||
}
|
||||
|
||||
TEST(DepthwiseConv, BackwardFilter) {
|
||||
DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
|
||||
"GemmConvGradFilter-CPU", "DepthwiseConvGradFilter-GPU", backward_filter);
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace paddle
|
@ -0,0 +1,50 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "ConvOpTest.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
TEST(GemmConv, NaiveConv) {
|
||||
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
|
||||
"NaiveConv-CPU", "GemmConv-CPU", forward);
|
||||
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
|
||||
"NaiveConv-CPU", "GemmConv-CPU", forward);
|
||||
}
|
||||
|
||||
#ifndef PADDLE_ONLY_CPU
|
||||
TEST(GemmConv, Forward) {
|
||||
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
|
||||
"GemmConv-CPU", "GemmConv-GPU", forward);
|
||||
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
|
||||
"GemmConv-CPU", "GemmConv-GPU", forward);
|
||||
}
|
||||
|
||||
TEST(GemmConv, BackwardInput) {
|
||||
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
|
||||
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", backward_input);
|
||||
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
|
||||
"GemmConvGradInput-CPU", "GemmConvGradInput-GPU", backward_input);
|
||||
}
|
||||
|
||||
TEST(GemmConv, BackwardFilter) {
|
||||
Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
|
||||
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", backward_filter);
|
||||
Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
|
||||
"GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", backward_filter);
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue