|
|
|
@ -30,21 +30,34 @@ void FCOp::InferShape(framework::InferShapeContext* ctx) const {
|
|
|
|
|
auto w_dims = ctx->GetInputDim("W");
|
|
|
|
|
std::vector<int64_t> output_shape({in_dims[0], w_dims[1]});
|
|
|
|
|
|
|
|
|
|
if (ctx->HasInput("Bias")) {
|
|
|
|
|
auto bias_dims = ctx->GetInputDim("Bias");
|
|
|
|
|
PADDLE_ENFORCE_EQ(bias_dims[0], 1, "The shape of Bias must be [1, dim].");
|
|
|
|
|
PADDLE_ENFORCE_EQ(bias_dims[1], framework::product(w_dims) / w_dims[0],
|
|
|
|
|
"The shape of Bias must be [1, dim].");
|
|
|
|
|
}
|
|
|
|
|
PADDLE_ENFORCE(in_dims.size() == 2 || in_dims.size() == 4,
|
|
|
|
|
"Fully Connected input should be 2-D or 4-D tensor.");
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE(w_dims.size() == 2 || w_dims.size() == 4,
|
|
|
|
|
"Fully Connected input should be 2-D or 4-D tensor.");
|
|
|
|
|
|
|
|
|
|
PADDLE_ENFORCE_EQ(framework::product(w_dims) / w_dims[0],
|
|
|
|
|
framework::product(in_dims) / in_dims[0],
|
|
|
|
|
"Fully Connected input and weigth size do not match.");
|
|
|
|
|
|
|
|
|
|
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
|
|
|
|
|
ctx->ShareLoD("Input", "Out");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
framework::OpKernelType FCOp::GetExpectedKernelType(
|
|
|
|
|
const framework::ExecutionContext& ctx) const {
|
|
|
|
|
framework::LibraryType library{framework::LibraryType::kMKLDNN};
|
|
|
|
|
framework::DataLayout layout{framework::DataLayout::kMKLDNN};
|
|
|
|
|
|
|
|
|
|
framework::LibraryType library = framework::LibraryType::kPlain;
|
|
|
|
|
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
|
|
|
|
|
if (ctx.Attr<bool>("use_mkldnn");) {
|
|
|
|
|
library = framework::LibraryType::kMKLDNN;
|
|
|
|
|
layout = framework::DataLayout::kMKLDNN;
|
|
|
|
|
}
|
|
|
|
|
return framework::OpKernelType(
|
|
|
|
|
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
|
|
|
|
|
layout, library);
|
|
|
|
@ -60,13 +73,22 @@ void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
|
|
|
|
|
if (ctx->HasOutput(framework::GradVarName("W"))) {
|
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (ctx->HasInput("Bias")) {
|
|
|
|
|
auto bias_dims = ctx->GetInputDim("Bias");
|
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias"));
|
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("Bias"), bias_dims);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
framework::OpKernelType FCOpGrad::GetExpectedKernelType(
|
|
|
|
|
const framework::ExecutionContext& ctx) const {
|
|
|
|
|
framework::LibraryType library{framework::LibraryType::kMKLDNN};
|
|
|
|
|
framework::DataLayout layout{framework::DataLayout::kMKLDNN};
|
|
|
|
|
|
|
|
|
|
framework::LibraryType library = framework::LibraryType::kPlain;
|
|
|
|
|
framework::DataLayout layout = framework::DataLayout::kAnyLayout;
|
|
|
|
|
if (ctx.Attr<bool>("use_mkldnn");) {
|
|
|
|
|
library = framework::LibraryType::kMKLDNN;
|
|
|
|
|
layout = framework::DataLayout::kMKLDNN;
|
|
|
|
|
}
|
|
|
|
|
return framework::OpKernelType(
|
|
|
|
|
framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
|
|
|
|
|
layout, library);
|
|
|
|
@ -75,12 +97,12 @@ framework::OpKernelType FCOpGrad::GetExpectedKernelType(
|
|
|
|
|
void FCOpMaker::Make() {
|
|
|
|
|
AddInput("Input", "(Tensor) The input tensor of fully connected operator. ");
|
|
|
|
|
AddInput("W", "(Tensor), The second input tensor of fc op.");
|
|
|
|
|
AddInput("Bias", "(Tensor, optional) Bias vector with shape (1 x D")
|
|
|
|
|
.AsDispensable();
|
|
|
|
|
AddOutput("Out", "(Tensor) The output tensor of fully connected operator. ");
|
|
|
|
|
AddAttr<bool>("use_mkldnn",
|
|
|
|
|
"(bool, default false) Only used in mkldnn kernel")
|
|
|
|
|
.SetDefault(false);
|
|
|
|
|
AddAttr<bool>("bias_attr", "(bool, default false) Only used in mkldnn kernel")
|
|
|
|
|
.SetDefault(false);
|
|
|
|
|
AddComment(R"DOC(
|
|
|
|
|
Fully Connected Operator.
|
|
|
|
|
|
|
|
|
@ -94,9 +116,39 @@ void FCOpMaker::Make() {
|
|
|
|
|
)DOC");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class FCOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const paddle::framework::ExecutionContext& ctx) const override {
|
|
|
|
|
PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
|
|
|
|
|
"It must use CPUPlace.");
|
|
|
|
|
auto& dev_ctx = ctx.template device_context<CPUDeviceContext>();
|
|
|
|
|
auto blas = math::GetBlas<CPUDeviceContext, T>(dev_ctx);
|
|
|
|
|
auto input = ctx.Input<Tensor>("Input");
|
|
|
|
|
auto w = ctx.Input<Tensor>("W");
|
|
|
|
|
auto b = ctx.Input<Tensor>("Bias");
|
|
|
|
|
|
|
|
|
|
const T* input_data = input->data<T>();
|
|
|
|
|
const T* w_data = w->data<T>();
|
|
|
|
|
auto output = ctx.Output<Tensor>("Out");
|
|
|
|
|
T* output_data = output->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
|
|
|
|
|
auto in_dims = ctx->GetInputDim("Input");
|
|
|
|
|
auto w_dims = ctx->GetInputDim("W");
|
|
|
|
|
std::vector<int64_t> output_shape({in_dims[0], w_dims[1]});
|
|
|
|
|
|
|
|
|
|
if (bias) {
|
|
|
|
|
const T* bias_data = bias->data<T>();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
|
|
REGISTER_OPERATOR(fc, paddle::operators::FCOp, paddle::operators::FCOpMaker,
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
|
REGISTER_OPERATOR(fc, ops::FCOp, ops::FCOpMaker,
|
|
|
|
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
|
|
|
|
REGISTER_OPERATOR(fc_grad, paddle::operators::FCOpGrad);
|
|
|
|
|
REGISTER_OPERATOR(fc_grad, ops::FCOpGrad);
|
|
|
|
|
REGISTER_OP_CPU_KERNEL(fc, ops::FCMKLDNNOpKernel<float>,
|
|
|
|
|
ops::FCMKLDNNOpKernel<double>);
|
|
|
|
|