|
|
|
@ -37,14 +37,14 @@ __global__ void relu_cuda_backward_kernel(const data_t* dy,
|
|
|
|
|
|
|
|
|
|
std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor& x) {
|
|
|
|
|
auto out = paddle::Tensor(paddle::PlaceType::kGPU);
|
|
|
|
|
out.reshape(x.shape());
|
|
|
|
|
|
|
|
|
|
out.reshape(x.shape());
|
|
|
|
|
int numel = x.size();
|
|
|
|
|
int block = 512;
|
|
|
|
|
int grid = (numel + block - 1) / block;
|
|
|
|
|
PD_DISPATCH_FLOATING_TYPES(
|
|
|
|
|
x.type(), "relu_cuda_forward_kernel", ([&] {
|
|
|
|
|
relu_cuda_forward_kernel<data_t><<<grid, block>>>(
|
|
|
|
|
relu_cuda_forward_kernel<data_t><<<grid, block, 0, x.stream()>>>(
|
|
|
|
|
x.data<data_t>(), out.mutable_data<data_t>(x.place()), numel);
|
|
|
|
|
}));
|
|
|
|
|
|
|
|
|
@ -62,7 +62,7 @@ std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor& x,
|
|
|
|
|
int grid = (numel + block - 1) / block;
|
|
|
|
|
PD_DISPATCH_FLOATING_TYPES(
|
|
|
|
|
out.type(), "relu_cuda_backward_kernel", ([&] {
|
|
|
|
|
relu_cuda_backward_kernel<data_t><<<grid, block>>>(
|
|
|
|
|
relu_cuda_backward_kernel<data_t><<<grid, block, 0, x.stream()>>>(
|
|
|
|
|
grad_out.data<data_t>(),
|
|
|
|
|
out.data<data_t>(),
|
|
|
|
|
grad_x.mutable_data<data_t>(x.place()),
|
|
|
|
|