parent
b29eca3b71
commit
03fe31097b
@ -0,0 +1,134 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import contextlib
|
||||
import unittest
|
||||
import numpy as np
|
||||
import six
|
||||
import sys
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.optimizer import SGDOptimizer
|
||||
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
|
||||
from test_imperative_base import new_program_scope
|
||||
|
||||
|
||||
class Discriminator(fluid.imperative.Layer):
|
||||
def __init__(self):
|
||||
super(Discriminator, self).__init__()
|
||||
self._fc1 = FC(size=32, act='elu', name="d_fc1")
|
||||
self._fc2 = FC(size=1, name="d_fc2")
|
||||
|
||||
def forward(self, inputs):
|
||||
x = self._fc1(inputs)
|
||||
return self._fc2(x)
|
||||
|
||||
|
||||
class Generator(fluid.imperative.Layer):
|
||||
def __init__(self):
|
||||
super(Generator, self).__init__()
|
||||
self._fc1 = FC(size=64, act='elu', name="g_fc1")
|
||||
self._fc2 = FC(size=64, act='elu', name="g_fc2")
|
||||
self._fc3 = FC(size=1, name="g_fc3")
|
||||
|
||||
def forward(self, inputs):
|
||||
x = self._fc1(inputs)
|
||||
x = self._fc2(x)
|
||||
return self._fc3(x)
|
||||
|
||||
|
||||
class TestImperativeMnist(unittest.TestCase):
|
||||
def test_mnist_cpu_float32(self):
|
||||
seed = 90
|
||||
|
||||
startup = fluid.Program()
|
||||
startup.random_seed = seed
|
||||
discriminate_p = fluid.Program()
|
||||
scope = fluid.core.Scope()
|
||||
exe = fluid.Executor(fluid.CPUPlace())
|
||||
with new_program_scope(
|
||||
main=discriminate_p, startup=startup, scope=scope):
|
||||
fluid.default_main_program().random_seed = seed
|
||||
|
||||
discriminator = Discriminator()
|
||||
generator = Generator()
|
||||
|
||||
img = fluid.layers.data(
|
||||
name="img", shape=[2, 1], append_batch_size=False)
|
||||
noise = fluid.layers.data(
|
||||
name="noise", shape=[2, 2], append_batch_size=False)
|
||||
|
||||
label = fluid.layers.data(
|
||||
name='label',
|
||||
shape=[2, 1],
|
||||
dtype='float32',
|
||||
append_batch_size=False)
|
||||
|
||||
d_real = discriminator(img)
|
||||
d_loss_real = fluid.layers.reduce_mean(
|
||||
fluid.layers.sigmoid_cross_entropy_with_logits(
|
||||
x=d_real, label=label))
|
||||
|
||||
d_fake = discriminator(generator(noise))
|
||||
d_loss_fake = fluid.layers.reduce_mean(
|
||||
fluid.layers.sigmoid_cross_entropy_with_logits(
|
||||
x=d_fake, label=label))
|
||||
|
||||
d_loss = d_loss_real + d_loss_fake
|
||||
|
||||
sgd = SGDOptimizer(learning_rate=1e-3)
|
||||
sgd.minimize(d_loss)
|
||||
|
||||
generate_p = fluid.Program()
|
||||
with new_program_scope(main=generate_p, startup=startup, scope=scope):
|
||||
fluid.default_main_program().random_seed = seed
|
||||
|
||||
discriminator = Discriminator()
|
||||
generator = Generator()
|
||||
|
||||
noise = fluid.layers.data(
|
||||
name="noise", shape=[2, 2], append_batch_size=False)
|
||||
label = fluid.layers.data(
|
||||
name='label',
|
||||
shape=[2, 1],
|
||||
dtype='float32',
|
||||
append_batch_size=False)
|
||||
|
||||
d_fake = discriminator(generator(noise))
|
||||
g_loss = fluid.layers.reduce_mean(
|
||||
fluid.layers.sigmoid_cross_entropy_with_logits(
|
||||
x=d_fake, label=label))
|
||||
|
||||
sgd = SGDOptimizer(learning_rate=1e-3)
|
||||
sgd.minimize(g_loss)
|
||||
|
||||
img = np.ones([2, 1], np.float32)
|
||||
label = np.ones([2, 1], np.float32)
|
||||
noise = np.ones([2, 2], np.float32)
|
||||
exe.run(startup)
|
||||
d_loss_val = exe.run(discriminate_p,
|
||||
feed={'img': img,
|
||||
'noise': noise,
|
||||
'label': label},
|
||||
fetch_list=[d_loss])[0]
|
||||
g_loss_val = exe.run(generate_p,
|
||||
feed={'noise': noise,
|
||||
'label': label},
|
||||
fetch_list=[g_loss])[0]
|
||||
sys.stderr.write('d_loss %s, g_loss: %s\n' % (d_loss_val, g_loss_val))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue