|
|
|
@ -70,9 +70,8 @@ __global__ void KernelConcat(T** inputs, const int input_col,
|
|
|
|
|
const int output_rows, const int output_cols,
|
|
|
|
|
T* output) {
|
|
|
|
|
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
double inv_input_col = 1.0 / input_col;
|
|
|
|
|
for (; tid_x < output_cols; tid_x += blockDim.x * gridDim.x) {
|
|
|
|
|
int split = tid_x * inv_input_col;
|
|
|
|
|
int split = tid_x * 1.0 / input_col;
|
|
|
|
|
int in_offset = tid_x - split * input_col;
|
|
|
|
|
T* input_ptr = inputs[split];
|
|
|
|
|
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
@ -110,17 +109,16 @@ __global__ void KernelConcatGrad(const T* input, const int input_row,
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
__global__ void KernelConcatGrad(const T* input, const int input_row,
|
|
|
|
|
const int input_col, const int output_cols,
|
|
|
|
|
const int input_col, const int output_col,
|
|
|
|
|
T** outputs) {
|
|
|
|
|
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
|
double inv_input_col = 1.0 / input_col;
|
|
|
|
|
for (; tid_x < input_col; tid_x += blockDim.x * gridDim.x) {
|
|
|
|
|
int split = tid_x * inv_input_col;
|
|
|
|
|
int in_offset = tid_x - split * input_col;
|
|
|
|
|
int split = tid_x / output_col;
|
|
|
|
|
int in_offset = tid_x - split * output_col;
|
|
|
|
|
T* output_ptr = outputs[split];
|
|
|
|
|
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
|
|
|
|
|
for (; tid_y < input_row; tid_y += blockDim.y * gridDim.y)
|
|
|
|
|
output_ptr[tid_y * output_cols + in_offset] =
|
|
|
|
|
output_ptr[tid_y * output_col + in_offset] =
|
|
|
|
|
input[tid_y * input_col + tid_x];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|