|
|
|
@ -58,24 +58,29 @@ def hook(settings, img_size, mean_img_size, num_classes, color, meta, use_jpeg,
|
|
|
|
|
settings.logger.info('DataProvider Initialization finished')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@provider(init_hook=hook)
|
|
|
|
|
def processData(settings, file_name):
|
|
|
|
|
@provider(init_hook=hook, min_pool_size=0)
|
|
|
|
|
def processData(settings, file_list):
|
|
|
|
|
"""
|
|
|
|
|
The main function for loading data.
|
|
|
|
|
Load the batch, iterate all the images and labels in this batch.
|
|
|
|
|
file_name: the batch file name.
|
|
|
|
|
file_list: the batch file list.
|
|
|
|
|
"""
|
|
|
|
|
data = cPickle.load(io.open(file_name, 'rb'))
|
|
|
|
|
indexes = list(range(len(data['images'])))
|
|
|
|
|
if settings.is_train:
|
|
|
|
|
random.shuffle(indexes)
|
|
|
|
|
for i in indexes:
|
|
|
|
|
if settings.use_jpeg == 1:
|
|
|
|
|
img = image_util.decode_jpeg(data['images'][i])
|
|
|
|
|
else:
|
|
|
|
|
img = data['images'][i]
|
|
|
|
|
img_feat = image_util.preprocess_img(img, settings.img_mean,
|
|
|
|
|
settings.img_size, settings.is_train,
|
|
|
|
|
settings.color)
|
|
|
|
|
label = data['labels'][i]
|
|
|
|
|
yield img_feat.tolist(), int(label)
|
|
|
|
|
with open(file_list, 'r') as fdata:
|
|
|
|
|
lines = [line.strip() for line in fdata]
|
|
|
|
|
random.shuffle(lines)
|
|
|
|
|
for file_name in lines:
|
|
|
|
|
with io.open(file_name.strip(), 'rb') as file:
|
|
|
|
|
data = cPickle.load(file)
|
|
|
|
|
indexes = list(range(len(data['images'])))
|
|
|
|
|
if settings.is_train:
|
|
|
|
|
random.shuffle(indexes)
|
|
|
|
|
for i in indexes:
|
|
|
|
|
if settings.use_jpeg == 1:
|
|
|
|
|
img = image_util.decode_jpeg(data['images'][i])
|
|
|
|
|
else:
|
|
|
|
|
img = data['images'][i]
|
|
|
|
|
img_feat = image_util.preprocess_img(img, settings.img_mean,
|
|
|
|
|
settings.img_size, settings.is_train,
|
|
|
|
|
settings.color)
|
|
|
|
|
label = data['labels'][i]
|
|
|
|
|
yield img_feat.astype('float32'), int(label)
|
|
|
|
|