parent
90886443b4
commit
05680d0d5a
@ -0,0 +1,51 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestSeqAvgPool1D(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = 'sequence_avg_pool'
|
||||
# one level, batch size is 4
|
||||
x = np.random.uniform(0.1, 1, [11, 23]).astype('float32')
|
||||
lod = [[0, 4, 5, 8, 11]]
|
||||
|
||||
out = np.zeros((4, 23)).astype('float32')
|
||||
for i in range(4):
|
||||
sub_x = x[lod[0][i]:lod[0][i + 1], :]
|
||||
out[i] = sub_x.mean(axis=0)
|
||||
|
||||
self.inputs = {'X': (x, lod)}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
|
||||
class TestSeqAvgPool2D(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = 'sequence_avg_pool'
|
||||
# one level, batch size is 4
|
||||
x = np.random.uniform(0.1, 1, [13, 3, 17]).astype('float32')
|
||||
lod = [[0, 4, 5, 8, 13]]
|
||||
|
||||
out = np.zeros((4, 3, 17)).astype('float32')
|
||||
for i in range(4):
|
||||
sub_x = np.reshape(x[lod[0][i]:lod[0][i + 1], :], (-1, 3 * 17))
|
||||
out[i] = np.reshape(sub_x.mean(axis=0), (3, 17))
|
||||
|
||||
self.inputs = {'X': (x, lod)}
|
||||
self.outputs = {'Out': out}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue