|
|
|
@ -25,17 +25,28 @@ import paddle.fluid as fluid
|
|
|
|
|
from paddle.hapi.model import to_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def one_hot(x, n_class):
|
|
|
|
|
res = np.eye(n_class)[np.array(x).reshape(-1)]
|
|
|
|
|
res = res.reshape(list(x.shape) + [n_class])
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def accuracy(pred, label, topk=(1, )):
|
|
|
|
|
maxk = max(topk)
|
|
|
|
|
pred = np.argsort(pred)[:, ::-1][:, :maxk]
|
|
|
|
|
label = label.reshape(-1, 1)
|
|
|
|
|
correct = (pred == np.repeat(label, maxk, 1))
|
|
|
|
|
pred = np.argsort(pred)[..., ::-1][..., :maxk]
|
|
|
|
|
if len(label.shape) == 1:
|
|
|
|
|
label = label.reshape(-1, 1)
|
|
|
|
|
elif label.shape[-1] != 1:
|
|
|
|
|
label = np.argmax(label, axis=-1)
|
|
|
|
|
label = label[..., np.newaxis]
|
|
|
|
|
correct = (pred == np.repeat(label, maxk, -1))
|
|
|
|
|
|
|
|
|
|
total = np.prod(np.array(label.shape[:-1]))
|
|
|
|
|
|
|
|
|
|
batch_size = label.shape[0]
|
|
|
|
|
res = []
|
|
|
|
|
for k in topk:
|
|
|
|
|
correct_k = correct[:, :k].sum()
|
|
|
|
|
res.append(float(correct_k) / batch_size)
|
|
|
|
|
correct_k = correct[..., :k].sum()
|
|
|
|
|
res.append(float(correct_k) / total)
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -49,8 +60,6 @@ def convert_to_one_hot(y, C):
|
|
|
|
|
|
|
|
|
|
class TestAccuracy(unittest.TestCase):
|
|
|
|
|
def test_acc(self, squeeze_y=False):
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
x = paddle.to_tensor(
|
|
|
|
|
np.array([[0.1, 0.2, 0.3, 0.4], [0.1, 0.4, 0.3, 0.2],
|
|
|
|
|
[0.1, 0.2, 0.4, 0.3], [0.1, 0.2, 0.3, 0.4]]))
|
|
|
|
@ -85,11 +94,36 @@ class TestAccuracy(unittest.TestCase):
|
|
|
|
|
m.reset()
|
|
|
|
|
self.assertEqual(m.total[0], 0.0)
|
|
|
|
|
self.assertEqual(m.count[0], 0.0)
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
|
|
def test_1d_label(self):
|
|
|
|
|
self.test_acc(True)
|
|
|
|
|
|
|
|
|
|
def compare(self, x_np, y_np, k=(1, )):
|
|
|
|
|
x = paddle.to_tensor(x_np)
|
|
|
|
|
y = paddle.to_tensor(y_np)
|
|
|
|
|
|
|
|
|
|
m = paddle.metric.Accuracy(name='my_acc', topk=k)
|
|
|
|
|
correct = m.compute(x, y)
|
|
|
|
|
|
|
|
|
|
acc_np = accuracy(x_np, y_np, k)
|
|
|
|
|
acc_np = acc_np[0] if len(acc_np) == 1 else acc_np
|
|
|
|
|
|
|
|
|
|
# check shape and results
|
|
|
|
|
self.assertEqual(correct.shape, list(x_np.shape)[:-1] + [max(k)])
|
|
|
|
|
self.assertEqual(m.update(correct), acc_np)
|
|
|
|
|
self.assertEqual(m.accumulate(), acc_np)
|
|
|
|
|
|
|
|
|
|
def test_3d(self):
|
|
|
|
|
x_np = np.random.rand(2, 3, 4)
|
|
|
|
|
y_np = np.random.randint(4, size=(2, 3, 1))
|
|
|
|
|
self.compare(x_np, y_np)
|
|
|
|
|
|
|
|
|
|
def test_one_hot(self):
|
|
|
|
|
x_np = np.random.rand(2, 3, 4)
|
|
|
|
|
y_np = np.random.randint(4, size=(2, 3))
|
|
|
|
|
y_one_hot_np = one_hot(y_np, 4)
|
|
|
|
|
self.compare(x_np, y_one_hot_np, (1, 2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestAccuracyDynamic(unittest.TestCase):
|
|
|
|
|
def setUp(self):
|
|
|
|
@ -148,6 +182,8 @@ class TestAccuracyStatic(TestAccuracyDynamic):
|
|
|
|
|
self.squeeze_label = True
|
|
|
|
|
|
|
|
|
|
def test_main(self):
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
|
|
main_prog = fluid.Program()
|
|
|
|
|
startup_prog = fluid.Program()
|
|
|
|
|
main_prog.random_seed = 1024
|
|
|
|
@ -178,6 +214,8 @@ class TestAccuracyStatic(TestAccuracyDynamic):
|
|
|
|
|
assert np.sum(acc.total) == 0
|
|
|
|
|
assert np.sum(acc.count) == 0
|
|
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestAccuracyStaticMultiTopk(TestAccuracyStatic):
|
|
|
|
|
def setUp(self):
|
|
|
|
@ -190,7 +228,6 @@ class TestAccuracyStaticMultiTopk(TestAccuracyStatic):
|
|
|
|
|
|
|
|
|
|
class TestPrecision(unittest.TestCase):
|
|
|
|
|
def test_1d(self):
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
x = np.array([0.1, 0.5, 0.6, 0.7])
|
|
|
|
|
y = np.array([1, 0, 1, 1])
|
|
|
|
@ -206,11 +243,7 @@ class TestPrecision(unittest.TestCase):
|
|
|
|
|
r = m.accumulate()
|
|
|
|
|
self.assertAlmostEqual(r, 4. / 6.)
|
|
|
|
|
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
|
|
def test_2d(self):
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
x = np.array([0.1, 0.5, 0.6, 0.7]).reshape(-1, 1)
|
|
|
|
|
y = np.array([1, 0, 1, 1]).reshape(-1, 1)
|
|
|
|
|
|
|
|
|
@ -231,13 +264,9 @@ class TestPrecision(unittest.TestCase):
|
|
|
|
|
self.assertEqual(m.fp, 0.0)
|
|
|
|
|
self.assertEqual(m.accumulate(), 0.0)
|
|
|
|
|
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestRecall(unittest.TestCase):
|
|
|
|
|
def test_1d(self):
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
x = np.array([0.1, 0.5, 0.6, 0.7])
|
|
|
|
|
y = np.array([1, 0, 1, 1])
|
|
|
|
|
|
|
|
|
@ -257,12 +286,10 @@ class TestRecall(unittest.TestCase):
|
|
|
|
|
self.assertEqual(m.tp, 0.0)
|
|
|
|
|
self.assertEqual(m.fn, 0.0)
|
|
|
|
|
self.assertEqual(m.accumulate(), 0.0)
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestAuc(unittest.TestCase):
|
|
|
|
|
def test_auc_numpy(self):
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
x = np.array([[0.78, 0.22], [0.62, 0.38], [0.55, 0.45], [0.30, 0.70],
|
|
|
|
|
[0.14, 0.86], [0.59, 0.41], [0.91, 0.08], [0.16, 0.84]])
|
|
|
|
|
y = np.array([[0], [1], [1], [0], [1], [0], [0], [1]])
|
|
|
|
@ -274,10 +301,7 @@ class TestAuc(unittest.TestCase):
|
|
|
|
|
m.reset()
|
|
|
|
|
self.assertEqual(m.accumulate(), 0.0)
|
|
|
|
|
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
|
|
def test_auc_tensor(self):
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
x = paddle.to_tensor(
|
|
|
|
|
np.array([[0.78, 0.22], [0.62, 0.38], [0.55, 0.45], [0.30, 0.70],
|
|
|
|
|
[0.14, 0.86], [0.59, 0.41], [0.91, 0.08], [0.16, 0.84]]))
|
|
|
|
@ -290,8 +314,6 @@ class TestAuc(unittest.TestCase):
|
|
|
|
|
m.reset()
|
|
|
|
|
self.assertEqual(m.accumulate(), 0.0)
|
|
|
|
|
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|
|
|
|
|