|
|
|
@ -41,39 +41,49 @@ class TestProfiler(unittest.TestCase):
|
|
|
|
|
exe.run(fluid.default_main_program(), feed={'data': input})
|
|
|
|
|
os.remove(output_file)
|
|
|
|
|
|
|
|
|
|
def test_profiler(self):
|
|
|
|
|
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
|
|
|
|
|
hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
|
|
|
|
|
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
|
|
|
|
|
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
|
|
|
|
|
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
|
|
|
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
|
def profiler(self, state):
|
|
|
|
|
if state == 'GPU' and core.is_compile_gpu():
|
|
|
|
|
return
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
image = fluid.layers.data(name='x', shape=[784], dtype='float32')
|
|
|
|
|
hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
|
|
|
|
|
hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
|
|
|
|
|
predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
|
|
|
|
|
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
|
|
|
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
|
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
|
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
|
|
|
|
|
|
|
|
|
|
optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
|
|
|
|
|
opts = optimizer.minimize(avg_cost)
|
|
|
|
|
accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
|
|
|
|
|
opts = optimizer.minimize(avg_cost, startup_program=startup_program)
|
|
|
|
|
|
|
|
|
|
place = fluid.CPUPlace() if state == 'CPU' else fluid.CUDAPlace(0)
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
exe.run(startup_program)
|
|
|
|
|
|
|
|
|
|
states = ['CPU', 'GPU'] if core.is_compile_gpu() else ['CPU']
|
|
|
|
|
for state in states:
|
|
|
|
|
place = fluid.CPUPlace() if state == 'CPU' else fluid.CUDAPlace(0)
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
accuracy.reset(exe)
|
|
|
|
|
with profiler.profiler(state, 'total') as prof:
|
|
|
|
|
for iter in range(10):
|
|
|
|
|
if iter == 2:
|
|
|
|
|
profiler.reset_profiler()
|
|
|
|
|
x = np.random.random((32, 784)).astype("float32")
|
|
|
|
|
y = np.random.randint(0, 10, (32, 1)).astype("int64")
|
|
|
|
|
|
|
|
|
|
accuracy.reset(exe)
|
|
|
|
|
outs = exe.run(main_program,
|
|
|
|
|
feed={'x': x,
|
|
|
|
|
'y': y},
|
|
|
|
|
fetch_list=[avg_cost] + accuracy.metrics)
|
|
|
|
|
acc = np.array(outs[1])
|
|
|
|
|
pass_acc = accuracy.eval(exe)
|
|
|
|
|
|
|
|
|
|
with profiler.profiler(state, 'total') as prof:
|
|
|
|
|
for iter in range(10):
|
|
|
|
|
if iter == 2:
|
|
|
|
|
profiler.reset_profiler()
|
|
|
|
|
x = np.random.random((32, 784)).astype("float32")
|
|
|
|
|
y = np.random.randint(0, 10, (32, 1)).astype("int64")
|
|
|
|
|
def not_test_cpu_profiler(self):
|
|
|
|
|
self.profiler('CPU')
|
|
|
|
|
|
|
|
|
|
outs = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={'x': x,
|
|
|
|
|
'y': y},
|
|
|
|
|
fetch_list=[avg_cost] + accuracy.metrics)
|
|
|
|
|
acc = np.array(outs[1])
|
|
|
|
|
pass_acc = accuracy.eval(exe)
|
|
|
|
|
def not_test_cuda_profiler(self):
|
|
|
|
|
self.profiler('GPU')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|