Remove reader logic

avx_docs
Yu Yang 8 years ago
parent 797e89ece8
commit 05b45e1f86

@ -21,30 +21,16 @@ class Inference(object):
self.__gradient_machine__ = gm
self.__data_types__ = topo.data_type()
def iter_infer(self, input=None, batch_size=None, reader=None,
feeding=None):
def iter_infer(self, input, feeding=None):
feeder = DataFeeder(self.__data_types__, feeding)
if reader is None:
assert input is not None and isinstance(input, collections.Iterable)
if not isinstance(input, collections.Iterable):
raise TypeError("When reader is None, input should be whole "
"inference data and should be iterable")
if batch_size is None:
if not hasattr(input, '__len__'):
raise ValueError("Should set batch size when input data "
"don't contain length.")
batch_size = len(input)
def __reader_impl__():
for each_sample in input:
yield each_sample
reader = minibatch.batch(__reader_impl__, batch_size=batch_size)
else:
if input is not None:
raise ValueError("User should set either input or reader, "
"should not set them both.")
batch_size = len(input)
def __reader_impl__():
for each_sample in input:
yield each_sample
reader = minibatch.batch(__reader_impl__, batch_size=batch_size)
self.__gradient_machine__.start()
for data_batch in reader():
yield self.__gradient_machine__.forwardTest(feeder(data_batch))

Loading…
Cancel
Save