|
|
|
@ -14,42 +14,70 @@
|
|
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import unittest
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import paddle.fluid.layers as layers
|
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
|
from paddle.fluid.framework import default_startup_program, default_main_program
|
|
|
|
|
from paddle.fluid.executor import Executor
|
|
|
|
|
from paddle.fluid.backward import append_backward
|
|
|
|
|
from paddle.fluid.layers.control_flow import ConditionalBlock
|
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ConditionalBlockTest(unittest.TestCase):
|
|
|
|
|
def test_forward(self):
|
|
|
|
|
data = layers.data(name='X', shape=[1], dtype='float32')
|
|
|
|
|
data.stop_gradient = False
|
|
|
|
|
cond = ConditionalBlock(inputs=[data])
|
|
|
|
|
out = layers.create_tensor(dtype='float32')
|
|
|
|
|
with cond.block():
|
|
|
|
|
hidden = layers.fc(input=data, size=10)
|
|
|
|
|
layers.assign(hidden, out)
|
|
|
|
|
|
|
|
|
|
cpu = core.CPUPlace()
|
|
|
|
|
exe = Executor(cpu)
|
|
|
|
|
exe.run(default_startup_program())
|
|
|
|
|
|
|
|
|
|
x = numpy.random.random(size=(10, 1)).astype('float32')
|
|
|
|
|
|
|
|
|
|
outs = exe.run(feed={'X': x}, fetch_list=[out])[0]
|
|
|
|
|
print(outs)
|
|
|
|
|
loss = layers.mean(out)
|
|
|
|
|
append_backward(loss=loss)
|
|
|
|
|
outs = exe.run(
|
|
|
|
|
feed={'X': x},
|
|
|
|
|
fetch_list=[
|
|
|
|
|
default_main_program().block(0).var(data.name + "@GRAD")
|
|
|
|
|
])[0]
|
|
|
|
|
print(outs)
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
data = layers.data(name='X', shape=[1], dtype='float32')
|
|
|
|
|
data.stop_gradient = False
|
|
|
|
|
cond = ConditionalBlock(inputs=[data])
|
|
|
|
|
out = layers.create_tensor(dtype='float32')
|
|
|
|
|
with cond.block():
|
|
|
|
|
hidden = layers.fc(input=data, size=10)
|
|
|
|
|
layers.assign(hidden, out)
|
|
|
|
|
|
|
|
|
|
cpu = core.CPUPlace()
|
|
|
|
|
exe = Executor(cpu)
|
|
|
|
|
exe.run(startup_program)
|
|
|
|
|
|
|
|
|
|
x = np.random.random(size=(10, 1)).astype('float32')
|
|
|
|
|
|
|
|
|
|
outs = exe.run(main_program, feed={'X': x}, fetch_list=[out])[0]
|
|
|
|
|
print(outs)
|
|
|
|
|
loss = layers.mean(out)
|
|
|
|
|
append_backward(loss=loss)
|
|
|
|
|
outs = exe.run(
|
|
|
|
|
main_program,
|
|
|
|
|
feed={'X': x},
|
|
|
|
|
fetch_list=[main_program.block(0).var(data.name + "@GRAD")])[0]
|
|
|
|
|
print(outs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestConditionalBlockOpInferShape(unittest.TestCase):
|
|
|
|
|
def test_infer_shape(self):
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
global_block = main_program.global_block()
|
|
|
|
|
sub_block = main_program._create_block()
|
|
|
|
|
main_program._rollback()
|
|
|
|
|
step_scope = global_block.create_var(
|
|
|
|
|
type=core.VarDesc.VarType.STEP_SCOPES)
|
|
|
|
|
cond_var = layers.fill_constant(
|
|
|
|
|
shape=[1], dtype='bool', value=False)
|
|
|
|
|
|
|
|
|
|
op = global_block.append_op(
|
|
|
|
|
type='conditional_block',
|
|
|
|
|
inputs={
|
|
|
|
|
'Cond': [cond_var],
|
|
|
|
|
'Input': [],
|
|
|
|
|
},
|
|
|
|
|
outputs={'Out': [],
|
|
|
|
|
'Scope': [step_scope]},
|
|
|
|
|
attrs={'sub_block': sub_block,
|
|
|
|
|
'is_scalar_condition': True})
|
|
|
|
|
op.desc.infer_shape(global_block.desc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|