|
|
|
@ -104,7 +104,6 @@ bool in_quad(T x, T y, T roi_x[], T roi_y[]) {
|
|
|
|
|
* a31 = (dx3 * dy2 - dx2 * dy3) / (dx1 * dy2 - dx2 * dy1) / (w - 1)
|
|
|
|
|
* a32 = (dx1 * dy3 - dx3 * dy1) / (dx1 * dy2 - dx2 * dy1) / (h - 1)
|
|
|
|
|
* a33 = 1
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
template <typename T>
|
|
|
|
|
void get_transform_matrix(const int transformed_width,
|
|
|
|
@ -260,8 +259,8 @@ class CPUROIPerspectiveTransformOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
roi2image.Resize({rois_num});
|
|
|
|
|
int* roi2image_data = roi2image.mutable_data<int>(ctx.GetPlace());
|
|
|
|
|
auto lod = rois->lod().back();
|
|
|
|
|
for (int i = 0; i < lod.size() - 1; ++i) {
|
|
|
|
|
for (int j = lod[i]; j < lod[i + 1]; ++j) {
|
|
|
|
|
for (size_t i = 0; i < lod.size() - 1; ++i) {
|
|
|
|
|
for (size_t j = lod[i]; j < lod[i + 1]; ++j) {
|
|
|
|
|
roi2image_data[j] = i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -393,8 +392,8 @@ class CPUROIPerspectiveTransformGradOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
roi2image.Resize({rois_num});
|
|
|
|
|
int* roi2image_data = roi2image.mutable_data<int>(ctx.GetPlace());
|
|
|
|
|
auto lod = rois->lod().back();
|
|
|
|
|
for (int i = 0; i < lod.size() - 1; ++i) {
|
|
|
|
|
for (int j = lod[i]; j < lod[i + 1]; ++j) {
|
|
|
|
|
for (size_t i = 0; i < lod.size() - 1; ++i) {
|
|
|
|
|
for (size_t j = lod[i]; j < lod[i + 1]; ++j) {
|
|
|
|
|
roi2image_data[j] = i;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -404,7 +403,7 @@ class CPUROIPerspectiveTransformGradOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
for (int in_h = 0; in_h < in_height; ++in_h) {
|
|
|
|
|
for (int in_w = 0; in_w < in_width; ++in_w) {
|
|
|
|
|
T gradient = 0.0;
|
|
|
|
|
for (int roi_idx = lod[n]; roi_idx < lod[n + 1]; ++roi_idx) {
|
|
|
|
|
for (size_t roi_idx = lod[n]; roi_idx < lod[n + 1]; ++roi_idx) {
|
|
|
|
|
const T* rois = rois_data + roi_idx * 8;
|
|
|
|
|
T roi_x[4];
|
|
|
|
|
T roi_y[4];
|
|
|
|
|