feature/nmt add encoder (#6323)

* init nmt

* encoder ready

* only generation implementation

waiting for dynamic rnn ready to train

* init python

* remove decoder temporary

* clean

* clean
release/0.11.0
Yan Chunwei 7 years ago committed by Qiao Longfei
parent c22cf594f6
commit 06a3a88713

@ -0,0 +1,103 @@
import numpy as np
import paddle.v2 as paddle
import paddle.v2.dataset.conll05 as conll05
import paddle.v2.fluid.core as core
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.layers as layers
from paddle.v2.fluid.executor import Executor, g_scope
from paddle.v2.fluid.optimizer import SGDOptimizer
import paddle.v2.fluid as fluid
import paddle.v2.fluid.layers as pd
dict_size = 30000
source_dict_dim = target_dict_dim = dict_size
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
hidden_dim = 512
word_dim = 512
IS_SPARSE = True
batch_size = 50
max_length = 50
topk_size = 50
trg_dic_size = 10000
src_word_id = layers.data(name="src_word_id", shape=[1], dtype='int64')
src_embedding = layers.embedding(
input=src_word_id,
size=[dict_size, word_dim],
dtype='float32',
is_sparse=IS_SPARSE,
param_attr=fluid.ParamAttr(name='vemb'))
def encoder():
lstm_hidden0, lstm_0 = layers.dynamic_lstm(
input=src_embedding,
size=hidden_dim,
candidate_activation='sigmoid',
cell_activation='sigmoid')
lstm_hidden1, lstm_1 = layers.dynamic_lstm(
input=src_embedding,
size=hidden_dim,
candidate_activation='sigmoid',
cell_activation='sigmoid',
is_reverse=True)
bidirect_lstm_out = layers.concat([lstm_hidden0, lstm_hidden1], axis=0)
return bidirect_lstm_out
def decoder_trainer(context):
'''
decoder with trainer
'''
pass
def to_lodtensor(data, place):
seq_lens = [len(seq) for seq in data]
cur_len = 0
lod = [cur_len]
for l in seq_lens:
cur_len += l
lod.append(cur_len)
flattened_data = np.concatenate(data, axis=0).astype("int64")
flattened_data = flattened_data.reshape([len(flattened_data), 1])
res = core.LoDTensor()
res.set(flattened_data, place)
res.set_lod([lod])
return res
def main():
encoder_out = encoder()
# TODO(jacquesqiao) call here
decoder_trainer(encoder_out)
train_data = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.wmt14.train(8000), buf_size=1000),
batch_size=batch_size)
place = core.CPUPlace()
exe = Executor(place)
exe.run(framework.default_startup_program())
batch_id = 0
for pass_id in xrange(2):
print 'pass_id', pass_id
for data in train_data():
print 'batch', batch_id
batch_id += 1
if batch_id > 10: break
word_data = to_lodtensor(map(lambda x: x[0], data), place)
outs = exe.run(framework.default_main_program(),
feed={'src_word_id': word_data, },
fetch_list=[encoder_out])
if __name__ == '__main__':
main()
Loading…
Cancel
Save