feature/nmt add encoder (#6323)
* init nmt * encoder ready * only generation implementation waiting for dynamic rnn ready to train * init python * remove decoder temporary * clean * cleanrelease/0.11.0
parent
c22cf594f6
commit
06a3a88713
@ -0,0 +1,103 @@
|
||||
import numpy as np
|
||||
import paddle.v2 as paddle
|
||||
import paddle.v2.dataset.conll05 as conll05
|
||||
import paddle.v2.fluid.core as core
|
||||
import paddle.v2.fluid.framework as framework
|
||||
import paddle.v2.fluid.layers as layers
|
||||
from paddle.v2.fluid.executor import Executor, g_scope
|
||||
from paddle.v2.fluid.optimizer import SGDOptimizer
|
||||
import paddle.v2.fluid as fluid
|
||||
import paddle.v2.fluid.layers as pd
|
||||
|
||||
dict_size = 30000
|
||||
source_dict_dim = target_dict_dim = dict_size
|
||||
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
|
||||
hidden_dim = 512
|
||||
word_dim = 512
|
||||
IS_SPARSE = True
|
||||
batch_size = 50
|
||||
max_length = 50
|
||||
topk_size = 50
|
||||
trg_dic_size = 10000
|
||||
|
||||
src_word_id = layers.data(name="src_word_id", shape=[1], dtype='int64')
|
||||
src_embedding = layers.embedding(
|
||||
input=src_word_id,
|
||||
size=[dict_size, word_dim],
|
||||
dtype='float32',
|
||||
is_sparse=IS_SPARSE,
|
||||
param_attr=fluid.ParamAttr(name='vemb'))
|
||||
|
||||
|
||||
def encoder():
|
||||
|
||||
lstm_hidden0, lstm_0 = layers.dynamic_lstm(
|
||||
input=src_embedding,
|
||||
size=hidden_dim,
|
||||
candidate_activation='sigmoid',
|
||||
cell_activation='sigmoid')
|
||||
|
||||
lstm_hidden1, lstm_1 = layers.dynamic_lstm(
|
||||
input=src_embedding,
|
||||
size=hidden_dim,
|
||||
candidate_activation='sigmoid',
|
||||
cell_activation='sigmoid',
|
||||
is_reverse=True)
|
||||
|
||||
bidirect_lstm_out = layers.concat([lstm_hidden0, lstm_hidden1], axis=0)
|
||||
|
||||
return bidirect_lstm_out
|
||||
|
||||
|
||||
def decoder_trainer(context):
|
||||
'''
|
||||
decoder with trainer
|
||||
'''
|
||||
pass
|
||||
|
||||
|
||||
def to_lodtensor(data, place):
|
||||
seq_lens = [len(seq) for seq in data]
|
||||
cur_len = 0
|
||||
lod = [cur_len]
|
||||
for l in seq_lens:
|
||||
cur_len += l
|
||||
lod.append(cur_len)
|
||||
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
||||
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
||||
res = core.LoDTensor()
|
||||
res.set(flattened_data, place)
|
||||
res.set_lod([lod])
|
||||
return res
|
||||
|
||||
|
||||
def main():
|
||||
encoder_out = encoder()
|
||||
# TODO(jacquesqiao) call here
|
||||
decoder_trainer(encoder_out)
|
||||
|
||||
train_data = paddle.batch(
|
||||
paddle.reader.shuffle(
|
||||
paddle.dataset.wmt14.train(8000), buf_size=1000),
|
||||
batch_size=batch_size)
|
||||
|
||||
place = core.CPUPlace()
|
||||
exe = Executor(place)
|
||||
|
||||
exe.run(framework.default_startup_program())
|
||||
|
||||
batch_id = 0
|
||||
for pass_id in xrange(2):
|
||||
print 'pass_id', pass_id
|
||||
for data in train_data():
|
||||
print 'batch', batch_id
|
||||
batch_id += 1
|
||||
if batch_id > 10: break
|
||||
word_data = to_lodtensor(map(lambda x: x[0], data), place)
|
||||
outs = exe.run(framework.default_main_program(),
|
||||
feed={'src_word_id': word_data, },
|
||||
fetch_list=[encoder_out])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in new issue