parent
f2f839af27
commit
06b42e9ec5
@ -0,0 +1,81 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/crop_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
|
||||
class CropOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
auto dim0 = ctx.Input<Tensor>("X")->dims();
|
||||
auto Y = ctx.Input<Tensor>("Y");
|
||||
if (Y == nullptr) {
|
||||
auto shape = GetAttr<std::vector<int>>("shape");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
shape.size(), dim0.size(),
|
||||
"Shape size should be equal to dimention size of input tensor.");
|
||||
ctx.Output<Tensor>("Out")->Resize(paddle::framework::make_ddim(shape));
|
||||
} else {
|
||||
ctx.Output<Tensor>("Out")->Resize(Y->dims());
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class CropOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
CropOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "The input of crop op");
|
||||
AddInput("Y", "The input used as reference for cropping. ");
|
||||
AddOutput("Out", "The output of crop op.");
|
||||
AddComment(R"DOC(
|
||||
Crop Operator.
|
||||
)DOC");
|
||||
AddAttr<std::vector<int>>("offsets", "The offsets for cropping.");
|
||||
AddAttr<std::vector<int>>("shape", "The shape for cropping.");
|
||||
}
|
||||
};
|
||||
|
||||
class CropOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) should not be null");
|
||||
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
||||
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
|
||||
x_grad->Resize(x_dims);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(crop, ops::CropOp, ops::CropOpMaker, crop_grad, ops::CropOpGrad);
|
||||
REGISTER_OP_CPU_KERNEL(crop,
|
||||
ops::CropKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(crop_grad,
|
||||
ops::CropGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,22 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/crop_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(crop,
|
||||
ops::CropKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(crop_grad,
|
||||
ops::CropGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,138 @@
|
||||
/* Copyright (c) 2016 CropdleCropdle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename Place, typename T, size_t D>
|
||||
void CropFunction(const framework::ExecutionContext& context) {
|
||||
auto* x = context.Input<Tensor>("X");
|
||||
auto* out = context.Output<Tensor>("Out");
|
||||
out->mutable_data<T>(context.GetPlace());
|
||||
auto x_dims = x->dims();
|
||||
auto out_dims = out->dims();
|
||||
|
||||
auto offsets = context.op().GetAttr<std::vector<int>>("offsets");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
x_dims.size(), offsets.size(),
|
||||
"Offsets size should be equal to dimension size of input tensor.");
|
||||
|
||||
Eigen::array<std::pair<int, int>, D> paddings;
|
||||
for (size_t i = 0; i < D; ++i) {
|
||||
paddings[i].first = -(offsets[i]);
|
||||
paddings[i].second = -(x_dims[i] - out_dims[i] - offsets[i]);
|
||||
}
|
||||
|
||||
auto x_tensor = EigenTensor<T, D>::From(*x);
|
||||
auto out_tensor = EigenTensor<T, D>::From(*out);
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
out_tensor.device(place) = x_tensor.pad(paddings, 0);
|
||||
}
|
||||
|
||||
template <typename Place, typename T>
|
||||
class CropKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
int dim = context.Input<Tensor>("X")->dims().size();
|
||||
switch (dim) {
|
||||
case 1:
|
||||
CropFunction<Place, T, 1>(context);
|
||||
break;
|
||||
case 2:
|
||||
CropFunction<Place, T, 2>(context);
|
||||
break;
|
||||
case 3:
|
||||
CropFunction<Place, T, 3>(context);
|
||||
break;
|
||||
case 4:
|
||||
CropFunction<Place, T, 4>(context);
|
||||
break;
|
||||
case 5:
|
||||
CropFunction<Place, T, 5>(context);
|
||||
break;
|
||||
case 6:
|
||||
CropFunction<Place, T, 6>(context);
|
||||
break;
|
||||
default:
|
||||
LOG(ERROR) << "Only ranks up to 6 supported.";
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T, size_t D>
|
||||
void CropGradFunction(const framework::ExecutionContext& context) {
|
||||
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
d_x->mutable_data<T>(context.GetPlace());
|
||||
auto d_x_dims = d_x->dims();
|
||||
auto d_out_dims = d_out->dims();
|
||||
|
||||
auto offsets = context.op().GetAttr<std::vector<int>>("offsets");
|
||||
|
||||
Eigen::array<std::pair<int, int>, D> paddings;
|
||||
for (int i = 0; i < d_out_dims.size(); ++i) {
|
||||
paddings[i].first = offsets[i];
|
||||
paddings[i].second = d_x_dims[i] - d_out_dims[i] - offsets[i];
|
||||
}
|
||||
|
||||
auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
|
||||
auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
d_x_tensor.device(place) = d_out_tensor.pad(paddings, 0);
|
||||
}
|
||||
|
||||
template <typename Place, typename T>
|
||||
class CropGradKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
size_t dim =
|
||||
context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
|
||||
switch (dim) {
|
||||
case 1:
|
||||
CropGradFunction<Place, T, 1>(context);
|
||||
break;
|
||||
case 2:
|
||||
CropGradFunction<Place, T, 2>(context);
|
||||
break;
|
||||
case 3:
|
||||
CropGradFunction<Place, T, 3>(context);
|
||||
break;
|
||||
case 4:
|
||||
CropGradFunction<Place, T, 4>(context);
|
||||
break;
|
||||
case 5:
|
||||
CropGradFunction<Place, T, 5>(context);
|
||||
break;
|
||||
case 6:
|
||||
CropGradFunction<Place, T, 6>(context);
|
||||
break;
|
||||
default:
|
||||
LOG(ERROR) << "Only ranks up to 6 supported.";
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,35 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from paddle.v2.framework.op import Operator
|
||||
from gradient_checker import GradientChecker
|
||||
from op_test_util import OpTestMeta
|
||||
|
||||
|
||||
class TestCropOp(unittest.TestCase):
|
||||
__metaclass__ = OpTestMeta
|
||||
|
||||
def setUp(self):
|
||||
self.type = "crop"
|
||||
self.inputs = {'X': np.random.random((16, 16)).astype("float32"), }
|
||||
self.attrs = {}
|
||||
self.attrs['offsets'] = [2, 3]
|
||||
self.attrs['shape'] = [8, 8]
|
||||
self.outputs = {'Out': self.inputs['X'][2:10, 3:11]}
|
||||
|
||||
|
||||
class TestCropGradOp(GradientChecker):
|
||||
def setUp(self):
|
||||
self.op = Operator(
|
||||
type="crop", X="X", Out="Out", offsets=[2, 3], shape=[8, 8])
|
||||
self.inputs = {'X': np.random.random((16, 16)).astype("float32"), }
|
||||
|
||||
def test_normal(self):
|
||||
self.check_grad(
|
||||
self.op, self.inputs, set(["X"]), "Out", max_relative_error=0.5)
|
||||
|
||||
def test_cpu_gpu_compare(self):
|
||||
self.compare_grad(self.op, self.inputs)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue