commit
0749c8822d
@ -0,0 +1,76 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/sampling_id_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
class SamplingIdOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of SamplingIdOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of SamplingIdOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"),
|
||||
"min must less then max");
|
||||
|
||||
auto input_dims = ctx->GetInputDim("X");
|
||||
PADDLE_ENFORCE(input_dims.size() == 2,
|
||||
"Input(X, Filter) should be 2-D tensor.");
|
||||
|
||||
framework::DDim dims = input_dims;
|
||||
ctx->SetOutputDim("Out", dims);
|
||||
ctx->ShareLoD("X", "Out");
|
||||
}
|
||||
};
|
||||
|
||||
class SamplingIdOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X",
|
||||
"The input tensor of softmax. "
|
||||
"2-D with shape [batch_size, input_feature_dimensions].");
|
||||
AddOutput("Out", "SamplingId data tensor.");
|
||||
AddComment(R"DOC(
|
||||
SamplingId Operator.
|
||||
A layer for sampling id from multinomial distribution from the
|
||||
input. Sampling one id for one sample.)DOC");
|
||||
AddAttr<float>("min", "Minimum value of random. [default 0.0].")
|
||||
.SetDefault(0.0f);
|
||||
AddAttr<float>("max", "Maximun value of random. [default 1.0].")
|
||||
.SetDefault(1.0f);
|
||||
AddAttr<int>("seed",
|
||||
"Random seed used for the random number engine. "
|
||||
"0 means use a seed generated by the system."
|
||||
"Note that if seed is not 0, this operator will always "
|
||||
"generate the same random numbers every time. [default 0].")
|
||||
.SetDefault(0);
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(sampling_id, ops::SamplingIdOp, ops::SamplingIdOpMaker,
|
||||
paddle::framework::EmptyGradOpMaker);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(sampling_id, paddle::operators::SamplingIdKernel<float>,
|
||||
paddle::operators::SamplingIdKernel<double>);
|
@ -0,0 +1,19 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/sampling_id_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(sampling_id, paddle::operators::SamplingIdKernel<float>,
|
||||
paddle::operators::SamplingIdKernel<double>);
|
@ -0,0 +1,80 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <random>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename T>
|
||||
class SamplingIdKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
const Tensor* input = context.Input<Tensor>("X");
|
||||
const int batch_size = static_cast<int>(input->dims()[0]);
|
||||
const int width = static_cast<int>(input->dims()[1]);
|
||||
|
||||
PADDLE_ENFORCE_GE(batch_size, 0,
|
||||
"batch_size(dims[0]) must be nonnegative.");
|
||||
PADDLE_ENFORCE_GE(width, 0, "width(dims[1]) must be nonnegative.");
|
||||
|
||||
std::vector<T> ins_vector;
|
||||
framework::TensorToVector(*input, context.device_context(), &ins_vector);
|
||||
|
||||
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
|
||||
std::minstd_rand engine;
|
||||
if (seed == 0) {
|
||||
seed = std::random_device()();
|
||||
}
|
||||
engine.seed(seed);
|
||||
std::uniform_real_distribution<T> dist(
|
||||
static_cast<T>(context.Attr<float>("min")),
|
||||
static_cast<T>(context.Attr<float>("max")));
|
||||
|
||||
std::vector<T> ids(batch_size);
|
||||
for (size_t i = 0; i < batch_size; ++i) {
|
||||
T r = dist(engine);
|
||||
int idx = width - 1;
|
||||
for (int j = 0; j < width; ++j) {
|
||||
if ((r -= ins_vector[i * width + j]) < 0) {
|
||||
idx = j;
|
||||
break;
|
||||
}
|
||||
}
|
||||
ids[i] = ins_vector[i * width + idx];
|
||||
}
|
||||
|
||||
std::vector<int64_t> out_dim;
|
||||
out_dim.push_back(static_cast<int64_t>(batch_size));
|
||||
|
||||
Tensor* output = context.Output<Tensor>("Out");
|
||||
output->Resize(framework::make_ddim(out_dim));
|
||||
output->mutable_data<T>(context.GetPlace());
|
||||
framework::TensorFromVector(ids, context.device_context(), output);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,51 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.op import Operator
|
||||
|
||||
|
||||
class TestSamplingIdOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "sampling_id"
|
||||
self.use_mkldnn = False
|
||||
self.init_kernel_type()
|
||||
self.X = np.random.random((8, 4)).astype('float32')
|
||||
self.inputs = {"X": self.X}
|
||||
self.Y = np.random.random(8).astype('float32')
|
||||
self.outputs = {'Out': self.Y}
|
||||
self.attrs = {'max': 1.0, 'min': 0.0, 'seed': 1}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_customized(self.verify_output)
|
||||
y1 = self.out
|
||||
self.check_output_customized(self.verify_output)
|
||||
y2 = self.out
|
||||
self.assertTrue(np.array_equal(y1, y2))
|
||||
self.assertEqual(len(y1), len(self.Y))
|
||||
|
||||
def verify_output(self, outs):
|
||||
out = np.array(outs[0])
|
||||
self.out = out
|
||||
|
||||
def init_kernel_type(self):
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue