Merge remote-tracking branch 'upstream/develop' into windows/mkl

test=develop
revert-15207-remove_op_handle_lock_and_fix_var
peizhilin 6 years ago
commit 07c7eaabb4

@ -65,6 +65,7 @@ option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF)
option(GLIDE_INSTALL "Download and install go dependencies " ON)
option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF)
option(WITH_DISTRIBUTE "Compile with distributed support" OFF)
option(WITH_PSLIB "Compile with pslib support" OFF)
option(USE_EIGEN_FOR_BLAS "Use matrix multiplication in Eigen" OFF)
option(EIGEN_USE_THREADS "Compile with multi-threaded Eigen" OFF)
option(WITH_ARM_FP16 "Use half precision support on armv8.2-a cpu" OFF)
@ -203,14 +204,20 @@ include(external/xxhash) # download xxhash
include(external/dlpack)
include(external/snappy) # download snappy
include(external/snappystream) # download snappystream
include(external/warpctc) # download, build, install warpctc
if (NOT WIN32)
# there is no official support of warpctc, nccl, cupti in windows
include(external/warpctc) # download, build, install warpctc
# there is no official support of nccl, cupti in windows
include(cupti)
include(external/gzstream)
endif (NOT WIN32)
if(WITH_PSLIB)
include(external/libmct)
include(external/pslib_brpc)
include(external/pslib)
endif(WITH_PSLIB)
if(WITH_DISTRIBUTE)
if(WITH_GRPC)
include(external/grpc)
@ -278,6 +285,12 @@ set(EXTERNAL_LIBS
${PYTHON_LIBRARIES}
)
if(WITH_PSLIB)
list(APPEND EXTERNAL_LIBS pslib)
list(APPEND EXTERNAL_LIBS pslib_brpc)
list(APPEND EXTERNAL_LIBS libmct)
endif(WITH_PSLIB)
if(WITH_AMD_GPU)
find_package(HIP)
include(hip)

@ -84,6 +84,10 @@ if(NOT WITH_GOLANG)
add_definitions(-DPADDLE_WITHOUT_GOLANG)
endif(NOT WITH_GOLANG)
if(WITH_PSLIB)
add_definitions(-DPADDLE_WITH_PSLIB)
endif()
if(WITH_GPU)
add_definitions(-DPADDLE_WITH_CUDA)
add_definitions(-DEIGEN_USE_GPU)

@ -0,0 +1,78 @@
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
IF(NOT ${WITH_LIBMCT})
return()
ENDIF(NOT ${WITH_LIBMCT})
IF(WIN32 OR APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with LIBMCT in Paddle yet."
"Force WITH_LIBMCT=OFF")
SET(WITH_LIBMCT OFF CACHE STRING "Disable LIBMCT package in Windows and MacOS" FORCE)
return()
ENDIF()
INCLUDE(ExternalProject)
SET(LIBMCT_PROJECT "extern_libmct")
IF((NOT DEFINED LIBMCT_VER) OR (NOT DEFINED LIBMCT_URL))
MESSAGE(STATUS "use pre defined download url")
SET(LIBMCT_VER "0.1.0" CACHE STRING "" FORCE)
SET(LIBMCT_NAME "libmct" CACHE STRING "" FORCE)
SET(LIBMCT_URL "https://raw.githubusercontent.com/PaddlePaddle/Fleet/release/${LIBMCT_VER}/${LIBMCT_NAME}.tar.gz" CACHE STRING "" FORCE)
ENDIF()
MESSAGE(STATUS "LIBMCT_NAME: ${LIBMCT_NAME}, LIBMCT_URL: ${LIBMCT_URL}")
SET(LIBMCT_SOURCE_DIR "${THIRD_PARTY_PATH}/libmct")
SET(LIBMCT_DOWNLOAD_DIR "${LIBMCT_SOURCE_DIR}/src/${LIBMCT_PROJECT}")
SET(LIBMCT_DST_DIR "libmct")
SET(LIBMCT_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
SET(LIBMCT_INSTALL_DIR ${LIBMCT_INSTALL_ROOT}/${LIBMCT_DST_DIR})
SET(LIBMCT_ROOT ${LIBMCT_INSTALL_DIR})
SET(LIBMCT_INC_DIR ${LIBMCT_ROOT}/include)
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${LIBMCT_ROOT}/lib")
INCLUDE_DIRECTORIES(${LIBMCT_INC_DIR})
FILE(WRITE ${LIBMCT_DOWNLOAD_DIR}/CMakeLists.txt
"PROJECT(LIBMCT)\n"
"cmake_minimum_required(VERSION 3.0)\n"
"install(DIRECTORY ${LIBMCT_NAME}/include ${LIBMCT_NAME}/lib \n"
" DESTINATION ${LIBMCT_DST_DIR})\n")
ExternalProject_Add(
${LIBMCT_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${LIBMCT_SOURCE_DIR}
DOWNLOAD_DIR ${LIBMCT_DOWNLOAD_DIR}
DOWNLOAD_COMMAND wget --no-check-certificate ${LIBMCT_URL} -c -q -O ${LIBMCT_NAME}.tar.gz
&& tar zxvf ${LIBMCT_NAME}.tar.gz
DOWNLOAD_NO_PROGRESS 1
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${LIBMCT_INSTALL_ROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${LIBMCT_INSTALL_ROOT}
)
if (${CMAKE_VERSION} VERSION_LESS "3.3.0" OR NOT WIN32)
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/boost_dummy.c)
file(WRITE ${dummyfile} "const char *dummy = \"${dummyfile}\";")
add_library(libmct STATIC ${dummyfile})
else()
add_library(libmct INTERFACE)
endif()
#ADD_LIBRARY(libmct SHARED IMPORTED GLOBAL)
ADD_DEPENDENCIES(libmct ${LIBMCT_PROJECT})
LIST(APPEND external_project_dependencies libmct)

@ -0,0 +1,77 @@
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
IF(NOT ${WITH_PSLIB})
return()
ENDIF(NOT ${WITH_PSLIB})
IF(WIN32 OR APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with PSLIB in Paddle yet."
"Force WITH_PSLIB=OFF")
SET(WITH_PSLIB OFF CACHE STRING "Disable PSLIB package in Windows and MacOS" FORCE)
return()
ENDIF()
INCLUDE(ExternalProject)
SET(PSLIB_PROJECT "extern_pslib")
IF((NOT DEFINED PSLIB_VER) OR (NOT DEFINED PSLIB_URL))
MESSAGE(STATUS "use pre defined download url")
SET(PSLIB_VER "0.1.0" CACHE STRING "" FORCE)
SET(PSLIB_NAME "pslib" CACHE STRING "" FORCE)
SET(PSLIB_URL "https://raw.githubusercontent.com/PaddlePaddle/Fleet/release/${PSLIB_VER}/${PSLIB_NAME}.tar.gz" CACHE STRING "" FORCE)
ENDIF()
MESSAGE(STATUS "PSLIB_NAME: ${PSLIB_NAME}, PSLIB_URL: ${PSLIB_URL}")
SET(PSLIB_SOURCE_DIR "${THIRD_PARTY_PATH}/pslib")
SET(PSLIB_DOWNLOAD_DIR "${PSLIB_SOURCE_DIR}/src/${PSLIB_PROJECT}")
SET(PSLIB_DST_DIR "pslib")
SET(PSLIB_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
SET(PSLIB_INSTALL_DIR ${PSLIB_INSTALL_ROOT}/${PSLIB_DST_DIR})
SET(PSLIB_ROOT ${PSLIB_INSTALL_DIR})
SET(PSLIB_INC_DIR ${PSLIB_ROOT}/include)
SET(PSLIB_LIB_DIR ${PSLIB_ROOT}/lib)
SET(PSLIB_LIB ${PSLIB_LIB_DIR}/libps.so)
SET(PSLIB_IOMP_LIB ${PSLIB_LIB_DIR}/libiomp5.so) #todo what is this
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${PSLIB_ROOT}/lib")
INCLUDE_DIRECTORIES(${PSLIB_INC_DIR})
FILE(WRITE ${PSLIB_DOWNLOAD_DIR}/CMakeLists.txt
"PROJECT(PSLIB)\n"
"cmake_minimum_required(VERSION 3.0)\n"
"install(DIRECTORY ${PSLIB_NAME}/include ${PSLIB_NAME}/lib \n"
" DESTINATION ${PSLIB_DST_DIR})\n")
ExternalProject_Add(
${PSLIB_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${PSLIB_SOURCE_DIR}
DOWNLOAD_DIR ${PSLIB_DOWNLOAD_DIR}
DOWNLOAD_COMMAND wget --no-check-certificate ${PSLIB_URL} -c -q -O ${PSLIB_NAME}.tar.gz
&& tar zxvf ${PSLIB_NAME}.tar.gz
DOWNLOAD_NO_PROGRESS 1
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${PSLIB_INSTALL_ROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${PSLIB_INSTALL_ROOT}
)
ADD_LIBRARY(pslib SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET pslib PROPERTY IMPORTED_LOCATION ${PSLIB_LIB})
ADD_DEPENDENCIES(pslib ${PSLIB_PROJECT})
LIST(APPEND external_project_dependencies pslib)
IF(WITH_C_API)
INSTALL(FILES ${PSLIB_LIB} ${PSLIB_IOMP_LIB} DESTINATION lib)
ENDIF()

@ -0,0 +1,77 @@
# Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
IF(NOT ${WITH_PSLIB_BRPC})
return()
ENDIF(NOT ${WITH_PSLIB_BRPC})
IF(WIN32 OR APPLE)
MESSAGE(WARNING
"Windows or Mac is not supported with PSLIB_BRPC in Paddle yet."
"Force WITH_PSLIB_BRPC=OFF")
SET(WITH_PSLIB_BRPC OFF CACHE STRING "Disable PSLIB_BRPC package in Windows and MacOS" FORCE)
return()
ENDIF()
INCLUDE(ExternalProject)
SET(PSLIB_BRPC_PROJECT "extern_pslib_brpc")
IF((NOT DEFINED PSLIB_BRPC_NAME) OR (NOT DEFINED PSLIB_BRPC_URL))
MESSAGE(STATUS "use pre defined download url")
SET(PSLIB_BRPC_VER "0.1.0" CACHE STRING "" FORCE)
SET(PSLIB_BRPC_NAME "pslib_brpc" CACHE STRING "" FORCE)
SET(PSLIB_BRPC_URL "https://raw.githubusercontent.com/PaddlePaddle/Fleet/release/${PSLIB_BRPC_VER}/${PSLIB_BRPC_NAME}.tar.gz" CACHE STRING "" FORCE)
ENDIF()
MESSAGE(STATUS "PSLIB_BRPC_NAME: ${PSLIB_BRPC_NAME}, PSLIB_BRPC_URL: ${PSLIB_BRPC_URL}")
SET(PSLIB_BRPC_SOURCE_DIR "${THIRD_PARTY_PATH}/pslib_brpc")
SET(PSLIB_BRPC_DOWNLOAD_DIR "${PSLIB_BRPC_SOURCE_DIR}/src/${PSLIB_BRPC_PROJECT}")
SET(PSLIB_BRPC_DST_DIR "pslib_brpc")
SET(PSLIB_BRPC_INSTALL_ROOT "${THIRD_PARTY_PATH}/install")
SET(PSLIB_BRPC_INSTALL_DIR ${PSLIB_BRPC_INSTALL_ROOT}/${PSLIB_BRPC_DST_DIR})
SET(PSLIB_BRPC_ROOT ${PSLIB_BRPC_INSTALL_DIR})
SET(PSLIB_BRPC_INC_DIR ${PSLIB_BRPC_ROOT}/include)
SET(PSLIB_BRPC_LIB_DIR ${PSLIB_BRPC_ROOT}/lib)
SET(PSLIB_BRPC_LIB ${PSLIB_BRPC_LIB_DIR}/libbrpc.a)
SET(PSLIB_BRPC_IOMP_LIB ${PSLIB_BRPC_LIB_DIR}/libiomp5.so) #todo what is this
SET(CMAKE_INSTALL_RPATH "${CMAKE_INSTALL_RPATH}" "${PSLIB_BRPC_ROOT}/lib")
INCLUDE_DIRECTORIES(${PSLIB_BRPC_INC_DIR})
FILE(WRITE ${PSLIB_BRPC_DOWNLOAD_DIR}/CMakeLists.txt
"PROJECT(PSLIB_BRPC)\n"
"cmake_minimum_required(VERSION 3.0)\n"
"install(DIRECTORY ${PSLIB_BRPC_NAME}/include ${PSLIB_BRPC_NAME}/lib \n"
" DESTINATION ${PSLIB_BRPC_DST_DIR})\n")
ExternalProject_Add(
${PSLIB_BRPC_PROJECT}
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${PSLIB_BRPC_SOURCE_DIR}
DOWNLOAD_DIR ${PSLIB_BRPC_DOWNLOAD_DIR}
DOWNLOAD_COMMAND wget --no-check-certificate ${PSLIB_BRPC_URL} -c -q -O ${PSLIB_BRPC_NAME}.tar.gz
&& tar zxvf ${PSLIB_BRPC_NAME}.tar.gz
DOWNLOAD_NO_PROGRESS 1
UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${PSLIB_BRPC_INSTALL_ROOT}
CMAKE_CACHE_ARGS -DCMAKE_INSTALL_PREFIX:PATH=${PSLIB_BRPC_INSTALL_ROOT}
)
ADD_LIBRARY(pslib_brpc SHARED IMPORTED GLOBAL)
SET_PROPERTY(TARGET pslib_brpc PROPERTY IMPORTED_LOCATION ${PSLIB_BRPC_LIB})
ADD_DEPENDENCIES(pslib_brpc ${PSLIB_BRPC_PROJECT})
LIST(APPEND external_project_dependencies pslib_brpc)
IF(WITH_C_API)
INSTALL(FILES ${PSLIB_BRPC_LIB} ${PSLIB_BRPC_IOMP_LIB} DESTINATION lib)
ENDIF()

@ -18,8 +18,8 @@ ENDIF()
INCLUDE(python_module)
FIND_PACKAGE(PythonInterp ${PY_VERSION})
FIND_PACKAGE(PythonLibs ${PY_VERSION})
FIND_PACKAGE(PythonInterp ${PY_VERSION} REQUIRED)
FIND_PACKAGE(PythonLibs ${PY_VERSION} REQUIRED)
if(WIN32)
execute_process(COMMAND "${PYTHON_EXECUTABLE}" "-c"
@ -85,6 +85,5 @@ IF(PYTHONINTERP_FOUND)
"please use pip to upgrade protobuf. pip install -U protobuf")
ENDIF()
ENDIF(PYTHONINTERP_FOUND)
INCLUDE_DIRECTORIES(${PYTHON_INCLUDE_DIR})
INCLUDE_DIRECTORIES(${PYTHON_NUMPY_INCLUDE_DIR})

@ -200,6 +200,13 @@ if (WITH_ANAKIN AND WITH_MKL)
list(APPEND inference_deps anakin_inference_lib)
endif ()
if (TENSORRT_FOUND)
copy(tensorrt_lib DEPS ${inference_deps}
SRCS ${TENSORRT_ROOT}/include/Nv*.h ${TENSORRT_ROOT}/lib/libnvinfer*
DSTS ${FLUID_INSTALL_DIR}/third_party/install/tensorrt/include ${FLUID_INSTALL_DIR}/third_party/install/tensorrt/lib)
endif ()
set(module "inference")
if(WIN32)
set(paddle_fluid_lib ${PADDLE_BINARY_DIR}/paddle/fluid/inference/${CMAKE_BUILD_TYPE}/libpaddle_fluid.*)

@ -84,7 +84,7 @@ function(op_library TARGET)
endif()
if (WIN32)
# remove windows unsupported op, because windows has no nccl, no warpctc such ops.
foreach(windows_unsupport_op "nccl_op" "gen_nccl_id_op" "warpctc_op")
foreach(windows_unsupport_op "nccl_op" "gen_nccl_id_op")
if ("${TARGET}" STREQUAL "${windows_unsupport_op}")
return()
endif()

@ -37,8 +37,16 @@ paddle.fluid.DataFeedDesc.desc ArgSpec(args=['self'], varargs=None, keywords=Non
paddle.fluid.DataFeedDesc.set_batch_size ArgSpec(args=['self', 'batch_size'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.set_dense_slots ArgSpec(args=['self', 'dense_slots_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DataFeedDesc.set_use_slots ArgSpec(args=['self', 'use_slots_name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.AsyncExecutor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.AsyncExecutor.run ArgSpec(args=['self', 'program', 'data_feed', 'filelist', 'thread_num', 'fetch', 'debug'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.AsyncExecutor.__init__ ArgSpec(args=['self', 'place', 'run_mode'], varargs=None, keywords=None, defaults=(None, ''))
paddle.fluid.AsyncExecutor.config_distributed_nodes ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.AsyncExecutor.download_data ArgSpec(args=['self', 'afs_path', 'local_path', 'fs_default_name', 'ugi', 'file_cnt', 'hadoop_home', 'process_num'], varargs=None, keywords=None, defaults=('$HADOOP_HOME', 12))
paddle.fluid.AsyncExecutor.get_instance ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.AsyncExecutor.init_model ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.AsyncExecutor.init_server ArgSpec(args=['self', 'dist_desc'], varargs=None, keywords=None, defaults=None)
paddle.fluid.AsyncExecutor.init_worker ArgSpec(args=['self', 'dist_desc', 'startup_program'], varargs=None, keywords=None, defaults=None)
paddle.fluid.AsyncExecutor.run ArgSpec(args=['self', 'program', 'data_feed', 'filelist', 'thread_num', 'fetch', 'mode', 'debug'], varargs=None, keywords=None, defaults=('', False))
paddle.fluid.AsyncExecutor.save_model ArgSpec(args=['self', 'save_path'], varargs=None, keywords=None, defaults=None)
paddle.fluid.AsyncExecutor.stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.io.save_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.io.save_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
@ -201,6 +209,7 @@ paddle.fluid.layers.merge_selected_rows ArgSpec(args=['x', 'name'], varargs=None
paddle.fluid.layers.get_tensor_from_selected_rows ArgSpec(args=['x', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.lstm ArgSpec(args=['input', 'init_h', 'init_c', 'max_len', 'hidden_size', 'num_layers', 'dropout_prob', 'is_bidirec', 'is_test', 'name', 'default_initializer', 'seed'], varargs=None, keywords=None, defaults=(0.0, False, False, None, None, -1))
paddle.fluid.layers.psroi_pool ArgSpec(args=['input', 'rois', 'output_channels', 'spatial_scale', 'pooled_height', 'pooled_width', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.huber_loss ArgSpec(args=['input', 'label', 'delta'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.data ArgSpec(args=['name', 'shape', 'append_batch_size', 'dtype', 'lod_level', 'type', 'stop_gradient'], varargs=None, keywords=None, defaults=(True, 'float32', 0, VarType.LOD_TENSOR, True))
paddle.fluid.layers.open_files ArgSpec(args=['filenames', 'shapes', 'lod_levels', 'dtypes', 'thread_num', 'buffer_size', 'pass_num', 'is_test'], varargs=None, keywords=None, defaults=(None, None, 1, None))
paddle.fluid.layers.read_file ArgSpec(args=['reader'], varargs=None, keywords=None, defaults=None)
@ -367,7 +376,7 @@ paddle.fluid.optimizer.MomentumOptimizer.__init__ ArgSpec(args=['self', 'learnin
paddle.fluid.optimizer.MomentumOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdagradOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(1e-06, None, None))
paddle.fluid.optimizer.AdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.9, 0.999, 1e-08, None, None))
paddle.fluid.optimizer.AdamOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon', 'regularization', 'name', 'lazy_mode'], varargs=None, keywords=None, defaults=(0.001, 0.9, 0.999, 1e-08, None, None, False))
paddle.fluid.optimizer.AdamOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'beta1', 'beta2', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.9, 0.999, 1e-08, None, None))
paddle.fluid.optimizer.AdamaxOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))

@ -1,30 +1,39 @@
# windows treat symbolic file as a real file, which is different with unix
# We create a hidden file and compile it instead of origin source file.
#windows treat symbolic file as a real file, which is different with unix
#We create a hidden file and compile it instead of origin source file.
function(windows_symbolic TARGET)
set(oneValueArgs "")
set(multiValueArgs SRCS PATH)
cmake_parse_arguments(windows_symbolic "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
set(final_path ${CMAKE_CURRENT_SOURCE_DIR}/${windows_symbolic_PATH})
foreach(src ${windows_symbolic_SRCS})
get_filename_component(src ${src} NAME_WE)
if (NOT EXISTS ${final_path}/${src}.cc OR NOT EXISTS ${final_path}/${src}.cu)
message(FATAL " ${src}.cc and ${src}.cu must exsits, and ${src}.cu must be symbolic file.")
endif()
file(GENERATE OUTPUT ${final_path}/.${src}.cu INPUT ${final_path}/${src}.cc)
add_custom_command(OUTPUT ${final_path}/.${src}.cu
COMMAND ${CMAKE_COMMAND} -E remove ${final_path}/.${src}.cu
COMMAND ${CMAKE_COMMAND} -E copy "${final_path}/${src}.cc" "${final_path}/.${src}.cu"
COMMENT "create hidden file of ${src}.cu")
add_custom_target(${TARGET} ALL DEPENDS .${src}.cu)
get_filename_component(src ${src} NAME_WE)
if (NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc OR NOT EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cu)
message(FATAL " ${src}.cc and ${src}.cu must exsits, and ${src}.cu must be symbolic file.")
endif()
#only copy the xx.cu to.xx.cu when the content are modified
set(copy_flag 1)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu)
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc SOURCE_STR)
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu TARGET_STR)
if (SOURCE_STR STREQUAL TARGET_STR)
set(copy_flag 0)
endif()
endif()
if (copy_flag)
add_custom_command(OUTPUT .${src}.cu
COMMAND ${CMAKE_COMMAND} -E remove ${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu
COMMAND ${CMAKE_COMMAND} -E copy "${CMAKE_CURRENT_SOURCE_DIR}/${src}.cc" "${CMAKE_CURRENT_SOURCE_DIR}/.${src}.cu"
COMMENT "create hidden file of ${src}.cu")
endif(copy_flag)
add_custom_target(${TARGET} ALL DEPENDS .${src}.cu)
endforeach()
endfunction()
add_subdirectory(ir)
add_subdirectory(details)
# ddim lib
#ddim lib
proto_library(framework_proto SRCS framework.proto)
proto_library(async_executor_proto SRCS data_feed.proto)
@ -83,8 +92,8 @@ nv_test(data_device_transform_test SRCS data_device_transform_test.cu
if(WITH_GPU)
if (WIN32)
# windows treat symbolic file as a real file, which is different with unix
# We create a hidden file and compile it instead of origin source file.
#windows treat symbolic file as a real file, which is different with unix
#We create a hidden file and compile it instead of origin source file.
windows_symbolic(hidden_file SRCS data_type_transform.cu)
nv_library(data_type_transform SRCS .data_type_transform.cu DEPS tensor)
add_dependencies(data_type_transform hidden_file)
@ -135,7 +144,8 @@ cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator
nv_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
py_proto_compile(framework_py_proto SRCS framework.proto data_feed.proto)
# Generate an empty __init__.py to make framework_py_proto as a valid python module.
#Generate an empty \
#__init__.py to make framework_py_proto as a valid python module.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init)
if (NOT WIN32)
@ -187,7 +197,12 @@ cc_library(parallel_executor SRCS parallel_executor.cc DEPS
graph build_strategy
fast_threaded_ssa_graph_executor variable_helper)
cc_library(async_executor SRCS async_executor.cc data_feed.cc data_feed_factory.cc executor_thread_worker.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass async_executor_proto variable_helper)
if(WITH_PSLIB)
cc_library(async_executor SRCS async_executor.cc data_feed.cc data_feed_factory.cc executor_thread_worker.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass async_executor_proto variable_helper pslib_brpc pslib)
else()
cc_library(async_executor SRCS async_executor.cc data_feed.cc data_feed_factory.cc executor_thread_worker.cc DEPS op_registry device_context scope framework_proto glog lod_rank_table feed_fetch_method graph_to_program_pass async_executor_proto variable_helper)
endif(WITH_PSLIB)
cc_test(data_feed_test SRCS data_feed_test.cc DEPS async_executor)
cc_library(prune SRCS prune.cc DEPS framework_proto)

@ -29,6 +29,9 @@ limitations under the License. */
#include "paddle/fluid/inference/io.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/pybind/pybind.h"
#ifdef PADDLE_WITH_PSLIB
#include <pslib.h>
#endif
namespace paddle {
namespace framework {
@ -47,6 +50,11 @@ void AsyncExecutor::CreateThreads(
worker->SetDataFeed(reader);
worker->SetFetchVarNames(fetch_var_names);
worker->BindingDataFeedMemory();
#ifdef PADDLE_WITH_PSLIB
worker->SetPSlibPtr(_pslib_ptr);
worker->SetPullDenseThread(_pull_dense_thread);
worker->SetParamConfig(&_param_config);
#endif
}
void PrepareReaders(std::vector<std::shared_ptr<DataFeed>>& readers, // NOLINT
@ -60,12 +68,177 @@ void PrepareReaders(std::vector<std::shared_ptr<DataFeed>>& readers, // NOLINT
readers[0]->SetFileList(filelist);
}
#ifdef PADDLE_WITH_PSLIB
void AsyncExecutor::InitServer(const std::string& dist_desc, int index) {
_pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(
new paddle::distributed::PSlib());
_pslib_ptr->init_server(dist_desc, index);
InitParamConfig();
}
void AsyncExecutor::InitWorker(const std::string& dist_desc,
const std::vector<uint64_t>& host_sign_list,
int node_num, int index) {
_pslib_ptr = std::shared_ptr<paddle::distributed::PSlib>(
new paddle::distributed::PSlib());
_pslib_ptr->init_worker(
dist_desc, const_cast<uint64_t*>(host_sign_list.data()), node_num, index);
InitParamConfig();
}
uint64_t AsyncExecutor::StartServer() { return _pslib_ptr->run_server(); }
void AsyncExecutor::StopServer() { _pslib_ptr->stop_server(); }
void AsyncExecutor::GatherServers(const std::vector<uint64_t>& host_sign_list,
int node_num) {
_pslib_ptr->gather_servers(const_cast<uint64_t*>(host_sign_list.data()),
node_num);
}
void AsyncExecutor::InitParamConfig() {
for (int i = 0; i < _pslib_ptr->get_param()
->server_param()
.downpour_server_param()
.downpour_table_param_size();
++i) {
if (_pslib_ptr->get_param()
->server_param()
.downpour_server_param()
.downpour_table_param(i)
.table_class()
.find("SparseTable") != -1) {
_param_config.fea_dim = _pslib_ptr->get_param()
->server_param()
.downpour_server_param()
.downpour_table_param(i)
.accessor()
.fea_dim();
break;
}
}
_param_config.slot_dim = _param_config.fea_dim - 2;
_param_config.tmp_push_dense_wait_times = static_cast<int32_t>(
_pslib_ptr->get_param()->trainer_param().push_dense_per_batch());
_param_config.tmp_push_sparse_wait_times = static_cast<int32_t>(
_pslib_ptr->get_param()->trainer_param().push_sparse_per_batch());
for (auto t = 0u; t < _pslib_ptr->get_param()->trainer_param().skip_op_size();
++t) {
_param_config.skip_op.push_back(
_pslib_ptr->get_param()->trainer_param().skip_op(t));
}
for (auto t = 0u;
t < _pslib_ptr->get_param()->trainer_param().sparse_table_size(); ++t) {
auto& table = _pslib_ptr->get_param()->trainer_param().sparse_table(t);
std::vector<std::string> tmp_sparse_variable_name;
for (int i = 0u; i < table.slot_value_size(); ++i) {
tmp_sparse_variable_name.push_back(table.slot_value(i));
_param_config.slot_alias_to_table[table.slot_key(i)] = table.table_id();
}
std::vector<std::string> tmp_sparse_gradient_variable_name;
for (auto i = 0u; i < table.slot_gradient_size(); ++i) {
tmp_sparse_gradient_variable_name.push_back(table.slot_gradient(i));
}
_param_config.slot_input_vec[table.table_id()] =
std::move(tmp_sparse_variable_name);
_param_config.gradient_var[table.table_id()] =
std::move(tmp_sparse_gradient_variable_name);
_param_config.sparse_table_id.push_back(table.table_id());
}
for (auto t = 0u;
t < _pslib_ptr->get_param()->trainer_param().dense_table_size(); ++t) {
auto& table = _pslib_ptr->get_param()->trainer_param().dense_table(t);
std::vector<std::string> tmp_dense_variable_name;
for (int i = 0u; i < table.dense_variable_name_size(); ++i) {
tmp_dense_variable_name.push_back(table.dense_variable_name(i));
}
std::vector<std::string> tmp_dense_gradient_variable_name;
for (auto i = 0u; i < table.dense_gradient_variable_name_size(); ++i) {
tmp_dense_gradient_variable_name.push_back(
table.dense_gradient_variable_name(i));
}
_param_config.dense_variable_name[table.table_id()] =
std::move(tmp_dense_variable_name);
_param_config.dense_gradient_variable_name[table.table_id()] =
std::move(tmp_dense_gradient_variable_name);
_param_config.dense_table_id.push_back(table.table_id());
_param_config.dense_table_size.push_back(table.fea_dim());
}
}
void AsyncExecutor::InitModel() {
for (auto table_id : _param_config.dense_table_id) {
std::vector<paddle::ps::Region> regions;
for (auto& t : _param_config.dense_variable_name[table_id]) {
Variable* var = root_scope_->FindVar(t);
CHECK(var != nullptr) << "var[" << t << "] not found";
LoDTensor* tensor = var->GetMutable<LoDTensor>();
float* g = tensor->data<float>();
CHECK(g != nullptr) << "var[" << t << "] value not initialized";
float init_range = 0.2;
int rown = tensor->dims()[0];
init_range /= sqrt(rown);
std::normal_distribution<float> ndistr(0.0, 1.0);
for (auto i = 0u; i < tensor->numel(); ++i) {
g[i] = ndistr(local_random_engine()) * init_range;
}
paddle::ps::Region reg(g, tensor->numel());
regions.emplace_back(std::move(reg));
}
auto push_status = _pslib_ptr->_worker_ptr->push_dense_param(
regions.data(), regions.size(), table_id);
push_status.wait();
auto status = push_status.get();
if (status != 0) {
LOG(FATAL) << "push dense param failed, status[" << status << "]";
exit(-1);
}
}
}
void AsyncExecutor::SaveModel(const std::string& path) {
auto ret = _pslib_ptr->_worker_ptr->flush();
ret.wait();
ret = _pslib_ptr->_worker_ptr->save(path, 0);
ret.wait();
int32_t feasign_cnt = ret.get();
if (feasign_cnt == -1) { // (colourful-tree) TODO should be feasign_cnt < 0
LOG(FATAL) << "save model failed";
exit(-1);
}
}
void AsyncExecutor::PrepareDenseThread(const std::string& mode) {
if (mode == "mpi") {
DensePullThreadParam param;
param.ps_client = _pslib_ptr->_worker_ptr;
param.threshold = 1;
param.training_thread_num = actual_thread_num;
param.root_scope = root_scope_;
param.dense_params = &_param_config.dense_variable_name;
_pull_dense_thread =
std::shared_ptr<DensePullThread>(new DensePullThread(param));
_pull_dense_thread->start();
}
}
#endif
void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
const std::string& data_feed_desc_str,
const std::vector<std::string>& filelist,
const int thread_num,
const std::vector<std::string>& fetch_var_names,
const bool debug) {
const std::string& mode, const bool debug) {
std::vector<std::thread> threads;
auto& block = main_program.Block(0);
@ -82,7 +255,7 @@ void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
&data_feed_desc);
int actual_thread_num = thread_num;
actual_thread_num = thread_num;
int file_cnt = filelist.size();
PADDLE_ENFORCE(file_cnt > 0, "File list cannot be empty");
@ -106,11 +279,21 @@ void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
// todo: should be factory method for creating datafeed
std::vector<std::shared_ptr<DataFeed>> readers;
PrepareReaders(readers, actual_thread_num, data_feed_desc, filelist);
#ifdef PADDLE_WITH_PSLIB
PrepareDenseThread(mode);
#endif
std::vector<std::shared_ptr<ExecutorThreadWorker>> workers;
workers.resize(actual_thread_num);
for (auto& worker : workers) {
#ifdef PADDLE_WITH_PSLIB
if (mode == "mpi") {
worker.reset(new AsyncExecutorThreadWorker);
} else {
worker.reset(new ExecutorThreadWorker);
}
#else
worker.reset(new ExecutorThreadWorker);
#endif
}
// prepare thread resource here
@ -128,7 +311,11 @@ void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
for (auto& th : threads) {
th.join();
}
#ifdef PADDLE_WITH_PSLIB
if (mode == "mpi") {
_pull_dense_thread->stop();
}
#endif
root_scope_->DropKids();
return;

@ -14,9 +14,11 @@ limitations under the License. */
#pragma once
#include <time.h>
#include <map>
#include <memory>
#include <mutex> // NOLINT
#include <mutex> // NOLINT
#include <random> // local_random_engine
#include <set>
#include <string>
#include <thread> // NOLINT
@ -30,6 +32,31 @@ limitations under the License. */
namespace paddle {
namespace framework {
inline double current_realtime() {
#if !defined(_WIN32)
struct timespec tp;
clock_gettime(CLOCK_REALTIME, &tp);
return tp.tv_sec + tp.tv_nsec * 1e-9;
#else
return 0.0;
#endif
}
inline std::default_random_engine& local_random_engine() {
struct engine_wrapper_t {
std::default_random_engine engine;
engine_wrapper_t() {
static std::atomic<uint64_t> x(0);
std::seed_seq sseq = {x++, x++, x++,
static_cast<uint64_t>(current_realtime() * 1000)};
engine.seed(sseq);
}
};
thread_local engine_wrapper_t r;
return r.engine;
}
class AsyncExecutor {
public:
AsyncExecutor(Scope* scope, const platform::Place& place);
@ -39,7 +66,19 @@ class AsyncExecutor {
const std::vector<std::string>& filelist,
const int thread_num,
const std::vector<std::string>& fetch_names,
const bool debug = false);
const std::string& mode, const bool debug = false);
#ifdef PADDLE_WITH_PSLIB
void InitServer(const std::string& dist_desc, int index);
void InitWorker(const std::string& dist_desc,
const std::vector<uint64_t>& host_sign_list, int node_num,
int index);
uint64_t StartServer();
void StopServer();
void GatherServers(const std::vector<uint64_t>& host_sign_list, int node_num);
void InitModel();
void SaveModel(const std::string& path);
void InitParamConfig();
#endif
private:
void CreateThreads(ExecutorThreadWorker* worker,
@ -48,10 +87,21 @@ class AsyncExecutor {
const std::vector<std::string>& fetch_var_names,
Scope* root_scope, const int thread_index,
const bool debug);
#ifdef PADDLE_WITH_PSLIB
void PrepareDenseThread(const std::string& mode);
#endif
public:
#ifdef PADDLE_WITH_PSLIB
std::shared_ptr<paddle::distributed::PSlib> _pslib_ptr;
std::shared_ptr<DensePullThread> _pull_dense_thread;
AsyncWorkerParamConfig _param_config;
#endif
Scope* root_scope_;
platform::Place place_;
private:
int actual_thread_num;
};
} // namespace framework

@ -64,6 +64,7 @@ bool DataFeed::PickOneFile(std::string* filename) {
return false;
}
*filename = filelist_[file_idx_++];
LOG(ERROR) << "pick file:" << *filename;
return true;
}

@ -50,8 +50,10 @@ cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_
cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor)
cc_library(fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope)
cc_library(memory_optimize_pass SRCS analysis_var_pass.cc memory_reuse_types.cc DEPS graph graph_helper pass)
cc_library(modify_op_lock_and_record_event_pass SRCS modify_op_lock_and_record_event_pass.cc DEPS computation_op_handle op_graph_view multi_devices_helper)
cc_library(memory_early_delete_pass SRCS memory_early_delete_pass.cc DEPS memory_optimize_pass computation_op_handle scale_loss_grad_op_handle rpc_op_handle
all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass)
cc_library(reference_count_pass_helper SRCS reference_count_pass_helper.cc DEPS garbage_collector computation_op_handle)
cc_library(eager_deletion_op_handle SRCS eager_deletion_op_handle.cc DEPS lod_tensor selected_rows reference_count_pass_helper)
cc_library(eager_deletion_pass SRCS eager_deletion_pass.cc DEPS computation_op_handle eager_deletion_op_handle graph graph_helper pass)
@ -63,7 +65,12 @@ cc_library(all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_he
cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle)
set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass reference_count_pass eager_deletion_pass)
set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass reference_count_pass eager_deletion_pass memory_optimize_pass memory_early_delete_pass)
if (WITH_GPU)
list(APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass)
endif()
cc_test(memory_reuse_types_test SRCS memory_reuse_types_test.cc memory_reuse_types.cc DEPS framework_proto graph)
cc_test(analysis_var_pass_test SRCS analysis_var_pass_test.cc analysis_var_pass.cc memory_reuse_types.cc DEPS framework_proto graph graph_helper op_registry pass)
cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ${SSA_GRAPH_EXECUTOR_DEPS})
@ -84,4 +91,5 @@ cc_test(fused_broadcast_op_test SRCS fused_broadcast_op_handle_test.cc DEPS fuse
cc_library(build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
multi_devices_graph_print_pass multi_devices_graph_check_pass
fuse_elewise_add_act_pass multi_batch_merge_pass)
fuse_elewise_add_act_pass multi_batch_merge_pass
memory_optimize_pass)

File diff suppressed because it is too large Load Diff

@ -0,0 +1,120 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/details/memory_reuse_types.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace details {
constexpr char kAllOpDescs[] = "all_op_descs";
std::vector<ir::Node*> SortOpLikeDescOrder(const ir::Graph& graph);
// sort op in bfs order
std::vector<ir::Node*> BFSSortGraphOps(const ir::Graph& graph);
class ControlFlowGraph;
class AnalysisVarPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
private:
// fill the variable map(var_nodes) by version.
void InitSSAGraphNodes() const;
// update program descs
void RenameVarInGraphDesc(const std::string& var,
const std::string& cache_var, size_t idx) const;
// update ir nodes
void RenameVarInGraphNode(const std::string& var,
const std::string& cache_var, size_t idx,
ir::Graph* graph) const;
void SubGraphOptimize(OpDesc* op_desc) const;
// valid a tensor can be reuse or not
bool NodeCanReused(ir::Node* node) const;
// scan subblock and collect the output/input variables.
std::unordered_set<std::string> GetSubBlockVars(
const std::unordered_set<ir::Node*>&) const;
// check op has subblock or not
bool OpHasSubBlock(OpDesc* desc) const;
private:
// Reuse Node Pool, Owned.
mutable OrderedNodePairPool pool_;
// controlflow Graph
mutable std::unique_ptr<ControlFlowGraph> cfg_;
// skip set
mutable std::unordered_set<std::string> skip_set_;
// var nodes
mutable std::map<std::string, std::vector<ir::Node*>> var_nodes_;
};
class ControlFlowGraph {
public:
ControlFlowGraph() = default;
// For IR Graph in parallelexecutor
explicit ControlFlowGraph(const ir::Graph& graph);
void LiveVariableAnalysis();
void RenameVarInCFGGraph(const std::string& old_node,
const std::string& new_node, int begin_idx);
const std::set<std::string> LiveIn(ir::Node* op) const;
const std::set<std::string> LiveOut(ir::Node* op) const;
const std::set<std::string> Use(ir::Node* op) const;
const std::vector<ir::Node*> Ops() const;
std::vector<ir::Node*>& Ops();
// for ssa-graph nodes
ir::Node* GetNodeFromVarName(const std::string& name, ir::Node* op) const;
private:
void BuildCFGGraph();
void ConnectNodes();
using NodeListMap = std::unordered_map<ir::Node*, std::set<ir::Node*>>;
using VarSetMap = std::map<ir::Node*, std::set<std::string>>;
// successors ops use the output variables.
NodeListMap successors_;
// predecessors ops generated input variables.
NodeListMap predecessors_;
// variables lived before run current op.
VarSetMap live_in_;
// variables lived after run current op.
VarSetMap live_out_;
VarSetMap uses_; // op inputs
VarSetMap defs_; // op outputs
std::vector<ir::Node*> ops_; // op sequence by topology sort
};
} // namespace details
} // namespace framework
} // namespace paddle

File diff suppressed because it is too large Load Diff

@ -14,11 +14,16 @@ limitations under the License. */
#include "paddle/fluid/framework/details/build_strategy.h"
#include <glog/logging.h>
#include <memory>
#include "paddle/fluid/framework/details/memory_reuse_types.h"
#include "paddle/fluid/framework/details/multi_devices_graph_check_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
namespace paddle {
@ -69,6 +74,14 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
}
VLOG(1) << "CollectiveContext:" << context->String();
// NOTE(dzh): memory optimize should be a runtime pass.
// However, after multi_devices_pass, VarHandle, OpHandle is
// the de-fact IR, any reuse on Graph is meaningless.
// A side-effect of that, memory optimize cannot forsee the fetched vars
// , so fetchlist should be set persistable before call the Run interface.
if (strategy.memory_optimize_) {
auto analysis_var_pass = AppendPass("analysis_var_pass");
}
// Convert graph to run on multi-devices.
auto multi_devices_pass = AppendPass("multi_devices_pass");
multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
@ -79,8 +92,11 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// Add a graph print pass to record a graph with device info.
if (!strategy_.debug_graphviz_path_.empty()) {
auto multi_devices_print_pass = AppendPass("multi_devices_print_pass");
multi_devices_print_pass->SetNotOwned<const std::string>(
"debug_graphviz_path", &strategy_.debug_graphviz_path_);
const std::string graph_path =
string::Sprintf("%s%s", strategy_.debug_graphviz_path_.c_str(),
"_multi_devices_graph");
multi_devices_print_pass->Set<std::string>(kGraphvizPath,
new std::string(graph_path));
multi_devices_print_pass->Set<details::GraphvizSSAGraphPrinter>(
"graph_printer", new details::GraphvizSSAGraphPrinter);
}
@ -127,7 +143,6 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
CreatePassesFromStrategy(false);
std::unique_ptr<ir::Graph> graph(new ir::Graph(main_program));
for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
if (pass->Type() == "multi_devices_pass") {
pass->Erase("places");
@ -145,6 +160,17 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass->Erase("nccl_ctxs");
pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
#endif
} else if (pass->Type() == "analysis_var_pass") {
const std::vector<OpDesc *> *all_op_descs =
new std::vector<OpDesc *>(main_program.Block(0).AllOps());
graph->Set<const std::vector<OpDesc *>>(kAllOpDescs,
all_op_descs); // take ownership
graph->Set<GraphNodePool>(kGraphNodePool,
new GraphNodePool); // take ownership
pass->Erase(kAllOpDescs);
pass->SetNotOwned<const std::vector<OpDesc *>>(kAllOpDescs, all_op_descs);
} else if (pass->Type() == "sequential_execution_pass") {
LOG(INFO) << "set enable_sequential_execution:"
<< enable_sequential_execution_;
@ -166,6 +192,7 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
}
return graph;
}
} // namespace details
} // namespace framework
} // namespace paddle
@ -176,6 +203,7 @@ USE_PASS(multi_batch_merge_pass);
USE_PASS(multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
USE_PASS(analysis_var_pass);
USE_PASS(sequential_execution_pass);
USE_PASS(all_reduce_deps_pass);
USE_PASS(modify_op_lock_and_record_event_pass);

@ -60,8 +60,15 @@ struct BuildStrategy {
kCustomized = 2,
};
enum class OptimizeStrategy {
// To be Implemented,bruteforce, recursive compute unused var names.
kBruteForce = 0,
kControlFlowGraph = 1, // use cfg_graph algorithm, faster speed.
};
ReduceStrategy reduce_{ReduceStrategy::kAllReduce};
GradientScaleStrategy gradient_scale_{GradientScaleStrategy::kCoeffNumDevice};
OptimizeStrategy strategy_{OptimizeStrategy::kControlFlowGraph};
std::string debug_graphviz_path_{""};
@ -69,6 +76,10 @@ struct BuildStrategy {
bool enable_data_balance_{false};
bool memory_optimize_{false};
bool memory_early_delete_{false};
bool enable_sequential_execution_{false};
bool fuse_broadcast_op_{false};

@ -0,0 +1,140 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/op_handle_base.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
namespace paddle {
namespace framework {
namespace details {
class EarlyDeleteOpHandle : public OpHandleBase {
public:
EarlyDeleteOpHandle(ir::Node* node, const Scope* scope,
const platform::Place& place,
const std::vector<std::string>& names,
GarbageCollector* gc)
: OpHandleBase(node),
scope_(scope),
place_(place),
names_(names),
gc_(gc) {
#ifdef PADDLE_WITH_CUDA
if (IsStreamGarabageCollector()) {
auto gpu_place = boost::get<platform::CUDAPlace>(place);
PADDLE_ENFORCE(cudaSetDevice(gpu_place.device));
PADDLE_ENFORCE(cudaEventCreateWithFlags(&event_, cudaEventDisableTiming));
}
#endif
}
~EarlyDeleteOpHandle() {
#ifdef PADDLE_WITH_CUDA
if (IsStreamGarabageCollector()) {
auto gpu_place = boost::get<platform::CUDAPlace>(dev_ctx_->GetPlace());
PADDLE_ENFORCE(cudaSetDevice(gpu_place.device));
PADDLE_ENFORCE(cudaEventDestroy(event_));
}
#endif
}
std::string Name() const override { return "early_delete"; }
protected:
void RunImpl() override {
std::vector<std::shared_ptr<memory::Allocation>> tensors;
auto* local_scope = scope_->FindVar(kLocalExecScopeName)->Get<Scope*>();
for (auto& var_name : names_) {
auto* var = local_scope->FindVar(var_name);
PADDLE_ENFORCE(var != nullptr,
string::Sprintf("Local Scope not has var %s", var_name));
if (var->IsType<LoDTensor>()) {
tensors.emplace_back(var->GetMutable<LoDTensor>()->MoveMemoryHolder());
} else if (var->IsType<SelectedRows>()) {
tensors.emplace_back(var->GetMutable<SelectedRows>()
->mutable_value()
->MoveMemoryHolder());
} else if (var->IsType<LoDTensorArray>()) {
LoDTensorArray* tensor_array = var->GetMutable<LoDTensorArray>();
for (auto& tensor : *tensor_array) {
tensors.emplace_back(tensor.MoveMemoryHolder());
}
}
}
if (!tensors.empty()) {
ClearTensors(tensors);
}
}
private:
void ClearTensors(
const std::vector<std::shared_ptr<memory::Allocation>>& tensors) {
if (platform::is_cpu_place(place_)) {
ClearCPUTensors(tensors);
} else {
ClearGPUTensors(tensors);
}
}
void ClearCPUTensors(
const std::vector<std::shared_ptr<memory::Allocation>>& tensors) {
auto* gc = dynamic_cast<CPUGarbageCollector*>(gc_);
if (gc != nullptr) {
gc->Add(tensors);
}
}
void ClearGPUTensors(
const std::vector<std::shared_ptr<memory::Allocation>>& tensors) {
#ifdef PADDLE_WITH_CUDA
auto* gc = dynamic_cast<StreamGarbageCollector*>(gc_);
if (gc != nullptr) {
auto compute_stream = dev_ctx_->stream();
auto callback_stream = gc->stream();
auto callback_func = [=]() {
PADDLE_ENFORCE(cudaEventRecord(event_, compute_stream));
PADDLE_ENFORCE(cudaStreamWaitEvent(callback_stream, event_, 0));
};
gc_->Add(tensors, callback_func);
} else {
gc_->Add(tensors);
}
}
bool IsStreamGarabageCollector() const {
return dynamic_cast<const StreamGarbageCollector*>(gc_) != nullptr;
#endif
}
const Scope* scope_;
const platform::Place place_;
std::vector<std::string> names_;
GarbageCollector* gc_;
#ifdef PADDLE_WITH_CUDA
platform::CUDADeviceContext* dev_ctx_;
cudaEvent_t event_;
#endif
};
} // namespace details
} // namespace framework
} // namespace paddle

@ -0,0 +1,117 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/memory_early_delete_pass.h"
#include <queue>
#include <string>
#include <vector>
#include "paddle/fluid/framework/details/memory_reuse_types.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
namespace paddle {
namespace framework {
namespace details {
static ComputationOpHandle* FindNextComputationOpHandle(VarHandle* var_in) {
std::queue<VarHandleBase*> queue;
queue.push(var_in);
do {
auto* var = queue.front();
queue.pop();
for (auto* op : var->PendingOps()) {
auto* compute_op = dynamic_cast<ComputationOpHandle*>(op);
if (compute_op != nullptr && compute_op->GetPlace() == var_in->place_) {
return compute_op;
}
for (auto* out_var : op->Outputs()) {
queue.push(out_var);
}
}
} while (!queue.empty());
return nullptr;
}
std::unique_ptr<ir::Graph> MemoryEarlyDeletePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
auto& graph_pool = Get<GraphNodePool>(kGraphNodePool);
auto& gcs = Get<GarbageCollectorMap>(kGarbageCollector);
std::unordered_map<std::string, std::unordered_set<OpDesc*>> unlived_vars;
unlived_vars.reserve(graph_pool.size());
for (auto& pair : graph_pool) {
unlived_vars.insert(std::make_pair(pair.first, pair.second));
}
auto compare_and_insert_early_delete_op = [&](
OpHandleBase* op, const std::vector<VarHandleBase*>& vars) {
if (unlived_vars.empty()) return;
// unlived vars can be deleted after the last used op has finished.
auto* compute_op = dynamic_cast<ComputationOpHandle*>(op);
const auto& places = Get<std::vector<platform::Place>>(kAllPlaces);
for (auto& var : vars) {
auto* var_handle = dynamic_cast<VarHandle*>(var);
auto var_name = var->Node()->Name();
auto& var_place = var_handle->place_;
if (unlived_vars.count(var_name) == 0) continue;
if (!unlived_vars[var_name].empty()) {
if (compute_op != nullptr &&
unlived_vars[var_name].count(compute_op->Node()->Op()) != 0) {
unlived_vars[var_name].erase(compute_op->Node()->Op());
}
continue;
}
if (var_handle == nullptr || !var_handle->Node()->IsVar() ||
var_handle->Node()->IsCtrlVar())
continue;
// shameless copyed from reference count pass.
if (compute_op == nullptr) {
// use next computation op scope
compute_op = FindNextComputationOpHandle(var_handle);
}
auto* early_delete_node =
graph->CreateEmptyNode("early_delete", ir::Node::Type::kOperation);
GarbageCollector* gc = gcs.at(places[compute_op->GetScopeIdx()]).get();
auto* early_delete_handle = new EarlyDeleteOpHandle(
early_delete_node, compute_op->GetScope(), var_place, {var_name}, gc);
if (compute_op->Outputs().empty()) {
auto* dep_var = new DummyVarHandle(graph->CreateControlDepVar());
compute_op->AddOutput(dep_var);
graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
}
early_delete_handle->AddInput(compute_op->Outputs().front());
VLOG(5) << "Add early delete op " << var_name << " to Operator"
<< compute_op->Name();
}
};
auto all_ops = ir::FilterByNodeWrapper<OpHandleBase>(*graph);
for (auto& op : all_ops) {
compare_and_insert_early_delete_op(op, op->Inputs());
compare_and_insert_early_delete_op(op, op->Outputs());
}
return graph;
}
} // namespace details
} // namespace framework
} // namespace paddle
REGISTER_PASS(memory_early_delete_pass,
paddle::framework::details::MemoryEarlyDeletePass)
.RequireGraphAttr(paddle::framework::details::kGraphNodePool)
.RequireGraphAttr(paddle::framework::details::kGarbageCollector);

@ -0,0 +1,32 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/details/early_delete_op_handle.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace details {
class MemoryEarlyDeletePass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace details
} // namespace framework
} // namespace paddle

@ -0,0 +1,155 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/memory_reuse_types.h"
#include <iostream>
#include <sstream>
#include <string>
namespace paddle {
namespace framework {
namespace details {
size_t NodeSizeInBytes(ir::Node* n) {
auto* desc = FindVarDescInBlock(n);
auto shape = desc->GetShape();
size_t type_size = SizeOfType(desc->GetDataType());
int size = 1;
for (auto& s : shape) {
size *= s;
}
return type_size * std::abs(size);
}
std::string DebugStringImpl(VarDesc* var) {
std::stringstream ss;
ss << var->Name();
ss << "[";
try {
auto shape = var->GetShape();
for (size_t i = 0; i < shape.size(); ++i) {
if (i != shape.size() - 1) {
ss << shape[i] << ",";
} else {
ss << shape[i];
}
}
ss << "]";
} catch (...) {
ss << "Var has no VarDesc !!! Name:" << var->Name();
}
return ss.str();
}
std::string DebugString(ir::Node* var) {
return DebugStringImpl(FindVarDescInBlock(var));
}
// return DebugString(var->Var()); }
// NOTE(dzh): based ir node, if a large node has been reused
// by a small size node, then next time it appear in pool, it will
// have the small size. Find the original node shap from blockdesc.
VarDesc* FindVarDescInBlock(ir::Node* n) {
PADDLE_ENFORCE(n->IsVar() && !n->IsCtrlVar() && n->inputs.size() == 1);
BlockDesc* block = n->inputs[0]->Op()->Block();
PADDLE_ENFORCE(block->HasVar(n->Name()),
string::Sprintf("Block do not has var %s", n->Name()));
return block->FindVar(n->Name());
}
struct NodeComparator {
bool operator()(ir::Node* lhs, ir::Node* rhs) const {
auto* lhs_desc = FindVarDescInBlock(lhs);
auto* rhs_desc = FindVarDescInBlock(rhs);
auto lhs_shape = lhs_desc->GetShape();
auto rhs_shape = rhs_desc->GetShape();
if ((lhs_shape[0] == -1 && rhs_shape[0] == -1) ||
(lhs_shape[0] != -1 && rhs_shape[0] != -1)) {
return NodeSizeInBytes(lhs) <= NodeSizeInBytes(rhs);
} else {
return false;
}
}
};
void OrderedNodePairPool::Insert(ir::Node* var, ir::Node* op) {
PADDLE_ENFORCE(var->IsVar() && !var->IsCtrlVar());
PADDLE_ENFORCE(op->IsOp());
if (mark_table_.count(var->Name()) != 0) {
mark_table_[var->Name()]->second.insert(op);
return;
}
auto* var_desc = FindVarDescInBlock(var);
auto var_shape = var_desc->GetShape();
int batch_size = static_cast<int>(var_shape[0]);
NodeComparator compare_node;
Iter it = nodes_.begin();
while (it != nodes_.end()) {
auto* cache_desc = FindVarDescInBlock(it->first);
int cache_batch_size = cache_desc->GetShape()[0];
if ((cache_batch_size == -1 && batch_size == -1) ||
(cache_batch_size != -1 && batch_size != -1)) {
if (compare_node(it->first, var)) {
++it;
} else {
break;
}
} else if (cache_batch_size == -1 && batch_size != -1) {
++it;
} else if (cache_batch_size != -1 && batch_size == -1) {
break;
}
}
it =
nodes_.insert(it, std::make_pair(var, std::unordered_set<ir::Node*>{op}));
mark_table_[var->Name()] = it;
}
int OrderedNodePairPool::GetIndex(ir::Node* var) {
return std::distance(nodes_.begin(), mark_table_[var->Name()]);
}
ir::Node* OrderedNodePairPool::NodeMatch(ir::Node* var) const {
ir::Node* found_node = nullptr;
NodeComparator compare_node;
for (auto it = nodes_.begin(); it != nodes_.end(); ++it) {
if (compare_node(var, it->first)) {
found_node = it->first;
break;
}
}
return found_node;
}
void OrderedNodePairPool::Erase(ir::Node* var) {
PADDLE_ENFORCE(mark_table_.count(var->Name()));
nodes_.erase(mark_table_[var->Name()]);
mark_table_.erase(var->Name());
}
std::string OrderedNodePairPool::ToString() const {
std::stringstream ss;
for (auto it = nodes_.begin(); it != nodes_.end(); ++it) {
ss << DebugString(it->first) << " ";
}
return ss.str();
}
} // namespace details
} // namespace framework
} // namespace paddle

@ -0,0 +1,87 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <iostream>
#include <iterator>
#include <list>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/ir/graph.h"
namespace paddle {
namespace framework {
namespace details {
constexpr char kFetchedVars[] = "fetched_vars";
constexpr char kGraphNodePool[] = "graph_node_pool";
// NOTE(dzh): Variable and the operators use the var.
// for early delete pass.
// Because analysis var pass build base on ir::Node, which maybe released
// or modified between passes, so we use OpDesc* to mark ops.
using GraphNodePool = std::vector<
std::pair<std::string /*var node*/, std::unordered_set<OpDesc*> /* ops */>>;
// NOTE(dzh): by default, it sort node in ascend order(by node bytes size).
// in fluid, -1 means the batch_size is determined in runtime.
// the node batch_size equal -1 always ranking in the front than the node not.
// For example,
// node0[-1, 1] node1[-1, 1, 1], node2[1,1], node3[1,1024], ..
// O(1) insert, delete
class OrderedNodePairPool {
public:
using NodePair = std::pair<ir::Node*, std::unordered_set<ir::Node*>>;
using Iter = typename std::list<NodePair>::iterator;
using ConstIter = typename std::list<NodePair>::const_iterator;
void Insert(ir::Node* var, ir::Node* op);
void Erase(ir::Node* var);
bool Has(ir::Node* var) { return mark_table_.count(var->Name()); }
ir::Node* NodeMatch(ir::Node* var) const;
// map store non-const iterator, can not promise const
int GetIndex(ir::Node* var);
// pool all node to string
std::string ToString() const;
Iter begin() { return nodes_.begin(); }
Iter end() { return nodes_.end(); }
ConstIter begin() const { return nodes_.begin(); }
ConstIter end() const { return nodes_.end(); }
size_t size() const { return nodes_.size(); }
private:
// for searching.
std::unordered_map<std::string, Iter> mark_table_;
// node swap pairs. var -> ops dep var
std::list<NodePair> nodes_;
};
// node memory size in bytes
size_t NodeSizeInBytes(ir::Node* n);
std::string DebugString(ir::Node* var);
// std::string DebugString(VarDesc* var);
VarDesc* FindVarDescInBlock(ir::Node* n);
} // namespace details
} // namespace framework
} // namespace paddle

@ -0,0 +1,99 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/memory_reuse_types.h"
#include <algorithm>
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include "glog/logging.h"
#include "gtest/gtest.h"
namespace paddle {
namespace framework {
namespace details {
TEST(OrderedNodePairPool, Normal) {
OrderedNodePairPool pool;
std::vector<std::unique_ptr<ir::Node>> nodes;
// clang-format off
std::vector<std::vector<int64_t>> shapes = {{-1, 10},
{-1, 20},
{1, 2},
{5, 2},
{10, 20},
{-1, 2, 5},
{-1, 1, 5},
{-1, 1}};
// clang-format on
const int COUNT = shapes.size();
ProgramDesc prog;
BlockDesc* block_desc = prog.MutableBlock(0);
auto* op_desc = block_desc->AppendOp();
op_desc->SetType("dummy");
std::unique_ptr<ir::Node> op = ir::CreateNodeForTest(op_desc);
for (int i = 0; i < COUNT; ++i) {
auto desc = block_desc->Var(std::to_string(i));
desc->SetShape(shapes[i]);
std::unique_ptr<ir::Node> node = ir::CreateNodeForTest(desc);
node->inputs.emplace_back(op.get());
nodes.emplace_back(std::move(node));
}
for (auto& node : nodes) {
pool.Insert(node.get(), op.get());
}
// assert its order and interface.
std::cout << pool.ToString() << std::endl;
pool.Erase(nodes.front().get());
std::cout << pool.ToString() << std::endl;
ASSERT_EQ(pool.size(), static_cast<size_t>(COUNT - 1));
ASSERT_EQ(pool.GetIndex(nodes.back().get()), 0);
{
auto v1 = block_desc->Var("11");
v1->SetShape({-1, 256, 56, 56});
std::unique_ptr<ir::Node> node1 = ir::CreateNodeForTest(v1);
node1->inputs.emplace_back(op.get());
auto* cache = pool.NodeMatch(node1.get());
ASSERT_EQ(cache, nullptr);
}
{
auto v2 = block_desc->Var("12");
v2->SetShape({-1, 2, 5});
std::unique_ptr<ir::Node> node1 = ir::CreateNodeForTest(v2);
node1->inputs.emplace_back(op.get());
auto* cache = pool.NodeMatch(node1.get());
ASSERT_EQ(pool.GetIndex(cache), 2); // match 6:[-1,2,5]
}
{
auto v3 = block_desc->Var("13");
v3->SetShape({2, 5});
std::unique_ptr<ir::Node> node1 = ir::CreateNodeForTest(v3);
node1->inputs.emplace_back(op.get());
auto* cache = pool.NodeMatch(node1.get());
ASSERT_EQ(pool.GetIndex(cache), 5); // match 4:[5,2]
}
}
} // namespace details
} // namespace framework
} // namespace paddle

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save