|
|
|
@ -12,101 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
|
|
#include "GemmConvOp.h"
|
|
|
|
|
#include "ConvOp.h"
|
|
|
|
|
#include "GemmFunctor.h"
|
|
|
|
|
#include "Im2Col.h"
|
|
|
|
|
#include "paddle/math/MemoryHandle.h"
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* imData = [input_channels, input_height, input_width]
|
|
|
|
|
* colData = [input_channels, filter_height, filter_width,
|
|
|
|
|
* output_height, output_width]
|
|
|
|
|
*/
|
|
|
|
|
template <class T>
|
|
|
|
|
class Im2ColFunctor<DEVICE_TYPE_CPU, T> {
|
|
|
|
|
public:
|
|
|
|
|
void operator()(const T* imData,
|
|
|
|
|
int inputChannels,
|
|
|
|
|
int inputHeight,
|
|
|
|
|
int inputWidth,
|
|
|
|
|
int filterHeight,
|
|
|
|
|
int filterWidth,
|
|
|
|
|
int strideHeight,
|
|
|
|
|
int strideWidth,
|
|
|
|
|
int paddingHeight,
|
|
|
|
|
int paddingWidth,
|
|
|
|
|
int outputHeight,
|
|
|
|
|
int outputWidth,
|
|
|
|
|
T* colData) {
|
|
|
|
|
int channelsCol = inputChannels * filterHeight * filterWidth;
|
|
|
|
|
|
|
|
|
|
for (int c = 0; c < channelsCol; ++c) {
|
|
|
|
|
int wOffset = c % filterWidth;
|
|
|
|
|
int hOffset = (c / filterWidth) % filterHeight;
|
|
|
|
|
int c_im = c / filterWidth / filterHeight;
|
|
|
|
|
for (int h = 0; h < outputHeight; ++h) {
|
|
|
|
|
for (int w = 0; w < outputWidth; ++w) {
|
|
|
|
|
int imRowIdx = h * strideHeight + hOffset;
|
|
|
|
|
int imColIdx = w * strideWidth + wOffset;
|
|
|
|
|
if ((imRowIdx - paddingHeight) < 0 ||
|
|
|
|
|
(imRowIdx - paddingHeight) >= inputHeight ||
|
|
|
|
|
(imColIdx - paddingWidth) < 0 ||
|
|
|
|
|
(imColIdx - paddingWidth) >= inputWidth) {
|
|
|
|
|
colData[(c * outputHeight + h) * outputWidth + w] = T(0);
|
|
|
|
|
} else {
|
|
|
|
|
imRowIdx += c_im * inputHeight - paddingHeight;
|
|
|
|
|
imColIdx -= paddingWidth;
|
|
|
|
|
colData[(c * outputHeight + h) * outputWidth + w] =
|
|
|
|
|
imData[imRowIdx * inputWidth + imColIdx];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
|
class Col2ImFunctor<DEVICE_TYPE_CPU, T> {
|
|
|
|
|
public:
|
|
|
|
|
void operator()(const T* colData,
|
|
|
|
|
int inputChannels,
|
|
|
|
|
int inputHeight,
|
|
|
|
|
int inputWidth,
|
|
|
|
|
int filterHeight,
|
|
|
|
|
int filterWidth,
|
|
|
|
|
int strideHeight,
|
|
|
|
|
int strideWidth,
|
|
|
|
|
int paddingHeight,
|
|
|
|
|
int paddingWidth,
|
|
|
|
|
int outputHeight,
|
|
|
|
|
int outputWidth,
|
|
|
|
|
T* imData) {
|
|
|
|
|
int channelsCol = inputChannels * filterHeight * filterWidth;
|
|
|
|
|
|
|
|
|
|
for (int c = 0; c < channelsCol; ++c) {
|
|
|
|
|
int wOffset = c % filterWidth;
|
|
|
|
|
int hOffset = (c / filterWidth) % filterHeight;
|
|
|
|
|
int c_im = c / filterWidth / filterHeight;
|
|
|
|
|
for (int h = 0; h < outputHeight; ++h) {
|
|
|
|
|
for (int w = 0; w < outputWidth; ++w) {
|
|
|
|
|
int imRowIdx = h * strideHeight + hOffset;
|
|
|
|
|
int imColIdx = w * strideWidth + wOffset;
|
|
|
|
|
if ((imRowIdx - paddingHeight) >= 0 &&
|
|
|
|
|
(imRowIdx - paddingHeight) < inputHeight &&
|
|
|
|
|
(imColIdx - paddingWidth) >= 0 &&
|
|
|
|
|
(imColIdx - paddingWidth) < inputWidth) {
|
|
|
|
|
imRowIdx += c_im * inputHeight - paddingHeight;
|
|
|
|
|
imColIdx -= paddingWidth;
|
|
|
|
|
imData[imRowIdx * inputWidth + imColIdx] +=
|
|
|
|
|
colData[(c * outputHeight + h) * outputWidth + w];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* \brief Forward calculation of convolution.
|
|
|
|
|
*/
|
|
|
|
@ -155,15 +67,20 @@ public:
|
|
|
|
|
real* inputData = inputs[0].data<real>();
|
|
|
|
|
real* filterData = inputs[1].data<real>();
|
|
|
|
|
real* outputData = outputs[0].data<real>();
|
|
|
|
|
TensorShape imShape =
|
|
|
|
|
TensorShape({inputChannels / groups_, inputHeight, inputWidth});
|
|
|
|
|
TensorShape colShape = TensorShape({inputChannels / groups_,
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth,
|
|
|
|
|
outputHeight,
|
|
|
|
|
outputWidth});
|
|
|
|
|
|
|
|
|
|
size_t size = inputChannels / groups_ * filterHeight * filterWidth *
|
|
|
|
|
outputHeight * outputWidth;
|
|
|
|
|
resizeBuffer<Device>(size);
|
|
|
|
|
resizeBuffer<Device>(colShape.getElements());
|
|
|
|
|
real* colData = reinterpret_cast<real*>(memory_->getBuf());
|
|
|
|
|
|
|
|
|
|
Im2ColFunctor<Device, real> im2col;
|
|
|
|
|
Im2ColFunctor<kCFO, Device, real> im2col;
|
|
|
|
|
GemmFunctor<Device, real> gemm;
|
|
|
|
|
size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
|
|
|
|
|
size_t inputOffset = imShape.getElements();
|
|
|
|
|
size_t outputOffset =
|
|
|
|
|
(outputChannels / groups_) * outputHeight * outputWidth;
|
|
|
|
|
size_t filterOffset = filter.getElements() / groups_;
|
|
|
|
@ -171,18 +88,13 @@ public:
|
|
|
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
|
|
|
for (size_t g = 0; g < groups_; g++) {
|
|
|
|
|
im2col(inputData + g * inputOffset,
|
|
|
|
|
inputChannels / groups_,
|
|
|
|
|
inputHeight,
|
|
|
|
|
inputWidth,
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth,
|
|
|
|
|
imShape,
|
|
|
|
|
colData,
|
|
|
|
|
colShape,
|
|
|
|
|
strideH(),
|
|
|
|
|
strideW(),
|
|
|
|
|
paddingH(),
|
|
|
|
|
paddingW(),
|
|
|
|
|
outputHeight,
|
|
|
|
|
outputWidth,
|
|
|
|
|
colData);
|
|
|
|
|
paddingW());
|
|
|
|
|
|
|
|
|
|
int M = outputChannels / groups_;
|
|
|
|
|
int N = outputHeight * outputWidth;
|
|
|
|
@ -249,15 +161,20 @@ public:
|
|
|
|
|
real* outputGrad = inputs[0].data<real>();
|
|
|
|
|
real* filterData = inputs[1].data<real>();
|
|
|
|
|
real* inputGrad = outputs[0].data<real>();
|
|
|
|
|
TensorShape imShape =
|
|
|
|
|
TensorShape({inputChannels / groups_, inputHeight, inputWidth});
|
|
|
|
|
TensorShape colShape = TensorShape({inputChannels / groups_,
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth,
|
|
|
|
|
outputHeight,
|
|
|
|
|
outputWidth});
|
|
|
|
|
|
|
|
|
|
size_t size = inputChannels / groups_ * filterHeight * filterWidth *
|
|
|
|
|
outputHeight * outputWidth;
|
|
|
|
|
resizeBuffer<Device>(size);
|
|
|
|
|
resizeBuffer<Device>(colShape.getElements());
|
|
|
|
|
real* colData = reinterpret_cast<real*>(memory_->getBuf());
|
|
|
|
|
|
|
|
|
|
Col2ImFunctor<Device, real> col2im;
|
|
|
|
|
Col2ImFunctor<kCFO, Device, real> col2im;
|
|
|
|
|
GemmFunctor<Device, real> gemm;
|
|
|
|
|
size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
|
|
|
|
|
size_t inputOffset = imShape.getElements();
|
|
|
|
|
size_t outputOffset =
|
|
|
|
|
(outputChannels / groups_) * outputHeight * outputWidth;
|
|
|
|
|
size_t filterOffset = filter.getElements() / groups_;
|
|
|
|
@ -280,20 +197,14 @@ public:
|
|
|
|
|
0.0f,
|
|
|
|
|
colData,
|
|
|
|
|
N);
|
|
|
|
|
|
|
|
|
|
col2im(colData,
|
|
|
|
|
inputChannels / groups_,
|
|
|
|
|
inputHeight,
|
|
|
|
|
inputWidth,
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth,
|
|
|
|
|
col2im(inputGrad + g * inputOffset,
|
|
|
|
|
imShape,
|
|
|
|
|
colData,
|
|
|
|
|
colShape,
|
|
|
|
|
strideH(),
|
|
|
|
|
strideW(),
|
|
|
|
|
paddingH(),
|
|
|
|
|
paddingW(),
|
|
|
|
|
outputHeight,
|
|
|
|
|
outputWidth,
|
|
|
|
|
inputGrad + g * inputOffset);
|
|
|
|
|
paddingW());
|
|
|
|
|
}
|
|
|
|
|
inputGrad += inputChannels * inputHeight * inputWidth;
|
|
|
|
|
outputGrad += outputChannels * outputHeight * outputWidth;
|
|
|
|
@ -347,33 +258,33 @@ public:
|
|
|
|
|
real* outputGrad = inputs[0].data<real>();
|
|
|
|
|
real* inputData = inputs[1].data<real>();
|
|
|
|
|
real* filterGrad = outputs[0].data<real>();
|
|
|
|
|
TensorShape imShape =
|
|
|
|
|
TensorShape({inputChannels / groups_, inputHeight, inputWidth});
|
|
|
|
|
TensorShape colShape = TensorShape({inputChannels / groups_,
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth,
|
|
|
|
|
outputHeight,
|
|
|
|
|
outputWidth});
|
|
|
|
|
|
|
|
|
|
size_t size = inputChannels / groups_ * filterHeight * filterWidth *
|
|
|
|
|
outputHeight * outputWidth;
|
|
|
|
|
resizeBuffer<Device>(size);
|
|
|
|
|
resizeBuffer<Device>(colShape.getElements());
|
|
|
|
|
real* colData = reinterpret_cast<real*>(memory_->getBuf());
|
|
|
|
|
|
|
|
|
|
Im2ColFunctor<Device, real> im2col;
|
|
|
|
|
Im2ColFunctor<kCFO, Device, real> im2col;
|
|
|
|
|
GemmFunctor<Device, real> gemm;
|
|
|
|
|
size_t inputOffset = (inputChannels / groups_) * inputHeight * inputWidth;
|
|
|
|
|
size_t inputOffset = imShape.getElements();
|
|
|
|
|
size_t outputOffset =
|
|
|
|
|
(outputChannels / groups_) * outputHeight * outputWidth;
|
|
|
|
|
size_t filterOffset = filter.getElements() / groups_;
|
|
|
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
|
|
|
for (size_t g = 0; g < groups_; g++) {
|
|
|
|
|
im2col(inputData + g * inputOffset,
|
|
|
|
|
inputChannels / groups_,
|
|
|
|
|
inputHeight,
|
|
|
|
|
inputWidth,
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth,
|
|
|
|
|
imShape,
|
|
|
|
|
colData,
|
|
|
|
|
colShape,
|
|
|
|
|
strideH(),
|
|
|
|
|
strideW(),
|
|
|
|
|
paddingH(),
|
|
|
|
|
paddingW(),
|
|
|
|
|
outputHeight,
|
|
|
|
|
outputWidth,
|
|
|
|
|
colData);
|
|
|
|
|
paddingW());
|
|
|
|
|
|
|
|
|
|
int M = outputChannels / groups_;
|
|
|
|
|
int K = outputHeight * outputWidth;
|
|
|
|
|