parent
cc6c33b8b2
commit
0802197924
@ -0,0 +1,114 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <cstring>
|
||||
#include "paddle/framework/tensor.h"
|
||||
#include "paddle/platform/place.h"
|
||||
#include "paddle/framework/ddim.h"
|
||||
|
||||
/**
|
||||
* Return a new tensor from source tensor, gathered according to index
|
||||
* input[src]: type-T source Tensor
|
||||
* input[Index]: type-int index Tensor (1-D)
|
||||
* return: output tensor
|
||||
*/
|
||||
template <typename place, typename T>
|
||||
Tensor* Gather_func(Tensor* Src, Tensor* Index) {
|
||||
// assert index is an int-type tensor?
|
||||
// assert(Index->istype(int));
|
||||
|
||||
// check index of shape 1-D
|
||||
assert(Index->dims().size()==1);
|
||||
int index_size = Index->dims()[0];
|
||||
|
||||
// Source shape
|
||||
auto src_dims = Src->dims();
|
||||
DDim output_dims(dims_src);
|
||||
// Create a tensor of shape [index_size, dim_src[1:]]
|
||||
output_dims[0] = index_size;
|
||||
|
||||
Tensor* New_tensor;
|
||||
float* output = nullptr;
|
||||
|
||||
/* slice size */
|
||||
int slice_size = 1;
|
||||
for(unsigned int i = 0; i < src_dims.size(); ++i)
|
||||
slice_size *= src_dims[i];
|
||||
|
||||
/* Gathering */
|
||||
if (place == CPUPlace()) {
|
||||
// init for CPU
|
||||
output = New_tensor.mutable_data<T>(output_dims, CPUPlace());
|
||||
CPUGather(Src->data(), Index->data(), slice_size, new_tensor->mutable_data());
|
||||
} else { // GPU
|
||||
// init for GPU
|
||||
output = New_tensor.mutable_data<T>(output_dims, GPUPlace());
|
||||
/* how to specialize device??*/
|
||||
GPUGather(d, Src->data(), Index->data(), slice_size, new_tensor->mutable_data());
|
||||
}
|
||||
return New_tensor;
|
||||
}
|
||||
|
||||
/* Implementation of CPU copy */
|
||||
template<typename T>
|
||||
void CPUGather(const T* params, const int* indices,
|
||||
const int slice_size, const int index_size,
|
||||
T* output) {
|
||||
const size_t slice_bytes = slice_size * sizeof(T);
|
||||
|
||||
for(int i = 0; i < index_size; ++i)
|
||||
int index_ = indices[i];
|
||||
/* copy src[index_] to output[i] */
|
||||
memcpy(output + i * slice_bytes,
|
||||
params + index_ * slice_bytes,
|
||||
slice_bytes);
|
||||
}
|
||||
|
||||
/* Implementation of GPU copy:
|
||||
I suppose the GPUDevice& d, contains gpu_id and thread_id
|
||||
d = cuda_stream(gpu_id_, stream_id_);
|
||||
*/
|
||||
template<typename T>
|
||||
void GPUGather(const GPUDevice& d,
|
||||
const T* src, const int* Index,
|
||||
const int slice_size, const int index_size,
|
||||
T* output) {
|
||||
int block_count = slice_size * index_size;
|
||||
int thread_per_block = 1024;
|
||||
|
||||
GatherOpKernel<T>
|
||||
<<<block_count, thread_per_block, 0, d.stream()>>>(
|
||||
src, Index, output, slice_size,
|
||||
indices_size, slice_size, out_size);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void GatherOpKernel(const T* params, const int* indices, T* out,
|
||||
int64 indices_size,
|
||||
int64 slice_size, int64 out_size) {
|
||||
/* I suppose we have the following macro,
|
||||
which I strongly suggest that we should put in cuda:
|
||||
#define CUDA_1D_KERNEL_LOOP(i, n) \
|
||||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
|
||||
i += blockDim.x * gridDim.x)
|
||||
*/
|
||||
CUDA_1D_KERNEL_LOOP(i, out_size) {
|
||||
int indices_i = i / slice_size;
|
||||
int slice_i = i - indices_i * slice_size; // offset inside the slice
|
||||
int gather_i = indices[indices_i];
|
||||
int params_i = gather_i * slice_size + slice_i;
|
||||
out[i] = *(params + params_i);
|
||||
}
|
||||
}
|
@ -0,0 +1,119 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <cstring>
|
||||
#include "paddle/framework/tensor.h"
|
||||
#include "paddle/platform/place.h"
|
||||
#include "paddle/framework/ddim.h"
|
||||
|
||||
/**
|
||||
* Return a updated tensor from source tensor, scattered according to index:
|
||||
* dst[i] += src[index[i]]
|
||||
* input[src]: type-T source Tensor
|
||||
* input[Index]: type-int index Tensor (1-D)
|
||||
* return: output tensor
|
||||
*/
|
||||
template <typename place, typename T>
|
||||
void ScatterUpdate_func(Tensor* Src, Tensor* Dst, Tensor* Index) {
|
||||
// assert index is an int-type tensor
|
||||
assert(Index->istype(int));
|
||||
|
||||
// Source shape
|
||||
auto src_dims = Src->dims();
|
||||
auto dst_dims = Dst->dims();
|
||||
DDim output_dims(dims_src);
|
||||
|
||||
// check Src shape and Dst shape should match
|
||||
for(int i = 1; i < src_dims.size(); i++)
|
||||
assert(src_dims[i]==dst_dims[i]);
|
||||
|
||||
int index_size = Index->dims()[0];
|
||||
|
||||
/* slice size */
|
||||
int slice_size = 1;
|
||||
for(unsigned int i = 0; i < src_dims.size(); ++i)
|
||||
slice_size *= src_dims[i];
|
||||
|
||||
if (place == CPUPlace()) {
|
||||
// init
|
||||
output = new_tensor.mutable_data<T>(output_dims, CPUPlace());
|
||||
CPUScatterUpdate(src->data(), index->data(), slice_size, new_tensor->mutable_data());
|
||||
|
||||
} else { // GPU
|
||||
// init
|
||||
output = new_tensor.mutable_data<T>(output_dims, GPUPlace());
|
||||
/* how to specialize device??*/
|
||||
GPUScatterUpdate(d, src->data(), index->data(), slice_size, new_tensor->mutable_data());
|
||||
}
|
||||
}
|
||||
|
||||
/* Implementation of CPU copy */
|
||||
template<typename T>
|
||||
void CPUScatterUpdate(const T* src, const int* Index,
|
||||
const int slice_size, const int index_size,
|
||||
T* output) {
|
||||
//const size_t slice_bytes = slice_size * sizeof(T);
|
||||
|
||||
for(int i = 0; i < index_size; ++i)
|
||||
int index_ = index[i];
|
||||
/* dst[index_] += src[index_]
|
||||
add operation size: slice_size
|
||||
*/
|
||||
math::vAdd<T>(slice_size, src + index_ * slice_bytes,
|
||||
output + i * slice_bytes,
|
||||
output + i * slice_bytes);
|
||||
/* Scatter update, not just assign
|
||||
memcpy(output + i * slice_bytes,
|
||||
src + index_ * slice_bytes,
|
||||
slice_bytes);
|
||||
*/
|
||||
}
|
||||
|
||||
/* Implementation of GPU scatter:
|
||||
I suppose the GPUDevice& d, contains gpu_id and thread_id
|
||||
d = cuda_stream(gpu_id_, stream_id_);
|
||||
*/
|
||||
template<typename T>
|
||||
void GPUScatterUpdate(const GPUDevice& d,
|
||||
const T* src, const int* Index,
|
||||
const int slice_size, const int index_size,
|
||||
T* output) {
|
||||
int block_count = slice_size * index_size;
|
||||
int thread_per_block = 1024;
|
||||
|
||||
ScatterOpKernel<T>
|
||||
<<<block_count, thread_per_block, 0, d.stream()>>>(
|
||||
src, Index, output, slice_size,
|
||||
indices_size, slice_size, out_size);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void ScatterOpKernel(const T* params, const int* indices, T* out,
|
||||
int64 indices_size,
|
||||
int64 slice_size, int64 out_size) {
|
||||
/* I suppose we have the following macro,
|
||||
which I strongly suggest that we should put in cuda:
|
||||
#define CUDA_1D_KERNEL_LOOP(i, n) \
|
||||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
|
||||
i += blockDim.x * gridDim.x)
|
||||
*/
|
||||
CUDA_1D_KERNEL_LOOP(i, out_size) {
|
||||
int indices_i = i / slice_size;
|
||||
int slice_i = i - indices_i * slice_size; // offset inside the slice
|
||||
int scatter_i = indices[indices_i];
|
||||
int params_i = scatter_i * slice_size + slice_i;
|
||||
out[i] += *(params + params_i);
|
||||
}
|
||||
}
|
Loading…
Reference in new issue