fix traced layer with non persistable vars, test=develop (#22552)
parent
31b5464632
commit
08033c8634
@ -0,0 +1,85 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
import six
|
||||
import os
|
||||
|
||||
|
||||
class SimpleFCLayer(fluid.dygraph.Layer):
|
||||
def __init__(self, feature_size, batch_size, fc_size):
|
||||
super(SimpleFCLayer, self).__init__()
|
||||
self._linear = fluid.dygraph.Linear(feature_size, fc_size)
|
||||
self._offset = fluid.dygraph.to_variable(
|
||||
np.random.random((batch_size, fc_size)).astype('float32'))
|
||||
|
||||
def forward(self, x):
|
||||
fc = self._linear(x)
|
||||
return fc + self._offset
|
||||
|
||||
|
||||
class TestTracedLayerRecordNonPersistableInput(unittest.TestCase):
|
||||
def test_main(self):
|
||||
traced_layer = None
|
||||
with fluid.dygraph.guard():
|
||||
feature_size = 3
|
||||
batch_size = 4
|
||||
fc_size = 2
|
||||
layer = SimpleFCLayer(feature_size, batch_size, fc_size)
|
||||
optimizer = fluid.optimizer.SGD(learning_rate=1e-3,
|
||||
parameter_list=layer.parameters())
|
||||
|
||||
expected_persistable_vars = set([
|
||||
layer._linear.weight.name, layer._linear.bias.name,
|
||||
layer._offset.name
|
||||
])
|
||||
|
||||
for _ in six.moves.range(10):
|
||||
in_x = fluid.dygraph.to_variable(
|
||||
np.random.random((batch_size, feature_size)).astype(
|
||||
'float32'))
|
||||
if traced_layer is None:
|
||||
dygraph_out, traced_layer = fluid.dygraph.TracedLayer.trace(
|
||||
layer, [in_x])
|
||||
else:
|
||||
dygraph_out = layer(in_x)
|
||||
dygraph_out_numpy = dygraph_out.numpy()
|
||||
static_out = traced_layer([in_x])[0]
|
||||
self.assertTrue(np.array_equal(dygraph_out_numpy, static_out))
|
||||
|
||||
loss = fluid.layers.reduce_mean(dygraph_out)
|
||||
loss.backward()
|
||||
|
||||
optimizer.minimize(loss)
|
||||
|
||||
del layer
|
||||
|
||||
program = traced_layer.program
|
||||
actual_persistable_vars = set()
|
||||
for var in program.list_vars():
|
||||
if var.persistable:
|
||||
actual_persistable_vars.add(var.name)
|
||||
|
||||
self.assertEqual(actual_persistable_vars, expected_persistable_vars)
|
||||
|
||||
dirname = './traced_layer_test_non_persistable_vars'
|
||||
traced_layer.save_inference_model(dirname=dirname)
|
||||
filenames = set([f for f in os.listdir(dirname) if f != '__model__'])
|
||||
self.assertEqual(filenames, expected_persistable_vars)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue