Remove dependency on nltk for paddle __init__. (#27388)
* Remove dependency on nltk for paddle __init__. test=develop * Remove nltk.movie_reivew sentiment dataset to remove dependency on nltk. test=developrevert-27520-disable_pr
parent
df43905f12
commit
081fb2f963
@ -1,150 +0,0 @@
|
||||
# /usr/bin/env python
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
The script fetch and preprocess movie_reviews data set that provided by NLTK
|
||||
|
||||
TODO(yuyang18): Complete dataset.
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import six
|
||||
import collections
|
||||
from itertools import chain
|
||||
|
||||
import os
|
||||
import nltk
|
||||
from nltk.corpus import movie_reviews
|
||||
import zipfile
|
||||
from functools import cmp_to_key
|
||||
|
||||
import paddle.dataset.common
|
||||
|
||||
URL = "https://corpora.bj.bcebos.com/movie_reviews%2Fmovie_reviews.zip"
|
||||
MD5 = '155de2b77c6834dd8eea7cbe88e93acb'
|
||||
|
||||
__all__ = ['train', 'test', 'get_word_dict']
|
||||
NUM_TRAINING_INSTANCES = 1600
|
||||
NUM_TOTAL_INSTANCES = 2000
|
||||
|
||||
|
||||
def download_data_if_not_yet():
|
||||
"""
|
||||
Download the data set, if the data set is not download.
|
||||
"""
|
||||
try:
|
||||
# download and extract movie_reviews.zip
|
||||
paddle.dataset.common.download(
|
||||
URL, 'corpora', md5sum=MD5, save_name='movie_reviews.zip')
|
||||
path = os.path.join(paddle.dataset.common.DATA_HOME, 'corpora')
|
||||
filename = os.path.join(path, 'movie_reviews.zip')
|
||||
zip_file = zipfile.ZipFile(filename)
|
||||
zip_file.extractall(path)
|
||||
zip_file.close()
|
||||
# make sure that nltk can find the data
|
||||
if paddle.dataset.common.DATA_HOME not in nltk.data.path:
|
||||
nltk.data.path.append(paddle.dataset.common.DATA_HOME)
|
||||
movie_reviews.categories()
|
||||
except LookupError:
|
||||
print("Downloading movie_reviews data set, please wait.....")
|
||||
nltk.download(
|
||||
'movie_reviews', download_dir=paddle.dataset.common.DATA_HOME)
|
||||
print("Download data set success.....")
|
||||
print("Path is " + nltk.data.find('corpora/movie_reviews').path)
|
||||
|
||||
|
||||
def get_word_dict():
|
||||
"""
|
||||
Sorted the words by the frequency of words which occur in sample
|
||||
:return:
|
||||
words_freq_sorted
|
||||
"""
|
||||
words_freq_sorted = list()
|
||||
word_freq_dict = collections.defaultdict(int)
|
||||
download_data_if_not_yet()
|
||||
|
||||
for category in movie_reviews.categories():
|
||||
for field in movie_reviews.fileids(category):
|
||||
for words in movie_reviews.words(field):
|
||||
word_freq_dict[words] += 1
|
||||
words_sort_list = list(six.iteritems(word_freq_dict))
|
||||
words_sort_list.sort(key=cmp_to_key(lambda a, b: b[1] - a[1]))
|
||||
for index, word in enumerate(words_sort_list):
|
||||
words_freq_sorted.append((word[0], index))
|
||||
return words_freq_sorted
|
||||
|
||||
|
||||
def sort_files():
|
||||
"""
|
||||
Sorted the sample for cross reading the sample
|
||||
:return:
|
||||
files_list
|
||||
"""
|
||||
files_list = list()
|
||||
neg_file_list = movie_reviews.fileids('neg')
|
||||
pos_file_list = movie_reviews.fileids('pos')
|
||||
files_list = list(
|
||||
chain.from_iterable(list(zip(neg_file_list, pos_file_list))))
|
||||
return files_list
|
||||
|
||||
|
||||
def load_sentiment_data():
|
||||
"""
|
||||
Load the data set
|
||||
:return:
|
||||
data_set
|
||||
"""
|
||||
data_set = list()
|
||||
download_data_if_not_yet()
|
||||
words_ids = dict(get_word_dict())
|
||||
for sample_file in sort_files():
|
||||
words_list = list()
|
||||
category = 0 if 'neg' in sample_file else 1
|
||||
for word in movie_reviews.words(sample_file):
|
||||
words_list.append(words_ids[word.lower()])
|
||||
data_set.append((words_list, category))
|
||||
return data_set
|
||||
|
||||
|
||||
def reader_creator(data):
|
||||
"""
|
||||
Reader creator, generate an iterator for data set
|
||||
:param data:
|
||||
train data set or test data set
|
||||
"""
|
||||
for each in data:
|
||||
yield each[0], each[1]
|
||||
|
||||
|
||||
def train():
|
||||
"""
|
||||
Default training set reader creator
|
||||
"""
|
||||
data_set = load_sentiment_data()
|
||||
return reader_creator(data_set[0:NUM_TRAINING_INSTANCES])
|
||||
|
||||
|
||||
def test():
|
||||
"""
|
||||
Default test set reader creator
|
||||
"""
|
||||
data_set = load_sentiment_data()
|
||||
return reader_creator(data_set[NUM_TRAINING_INSTANCES:])
|
||||
|
||||
|
||||
def fetch():
|
||||
nltk.download('movie_reviews', download_dir=paddle.dataset.common.DATA_HOME)
|
@ -1,58 +0,0 @@
|
||||
# /usr/bin/env python
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import nltk
|
||||
import paddle.dataset.sentiment as st
|
||||
from nltk.corpus import movie_reviews
|
||||
|
||||
|
||||
class TestSentimentMethods(unittest.TestCase):
|
||||
def test_get_word_dict(self):
|
||||
word_dict = st.get_word_dict()[0:10]
|
||||
test_word_list = [(',', 0), ('the', 1), ('.', 2), ('a', 3), ('and', 4),
|
||||
('of', 5), ('to', 6), ("'", 7), ('is', 8), ('in', 9)]
|
||||
for idx, each in enumerate(word_dict):
|
||||
self.assertEqual(each, test_word_list[idx])
|
||||
self.assertTrue("/root/.cache/paddle/dataset" in nltk.data.path)
|
||||
|
||||
def test_sort_files(self):
|
||||
last_label = ''
|
||||
for sample_file in st.sort_files():
|
||||
current_label = sample_file.split("/")[0]
|
||||
self.assertNotEqual(current_label, last_label)
|
||||
last_label = current_label
|
||||
|
||||
def test_data_set(self):
|
||||
data_set = st.load_sentiment_data()
|
||||
last_label = -1
|
||||
|
||||
for each in st.test():
|
||||
self.assertNotEqual(each[1], last_label)
|
||||
last_label = each[1]
|
||||
|
||||
self.assertEqual(len(data_set), st.NUM_TOTAL_INSTANCES)
|
||||
self.assertEqual(len(list(st.train())), st.NUM_TRAINING_INSTANCES)
|
||||
self.assertEqual(
|
||||
len(list(st.test())),
|
||||
(st.NUM_TOTAL_INSTANCES - st.NUM_TRAINING_INSTANCES))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,42 +0,0 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
TestCases for Dataset,
|
||||
including create, config, run, etc.
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
import numpy as np
|
||||
import unittest
|
||||
import os
|
||||
import paddle
|
||||
import zipfile
|
||||
import paddle.dataset.common
|
||||
|
||||
URL = "https://corpora.bj.bcebos.com/movie_reviews%2Fmovie_reviews.zip"
|
||||
MD5 = '155de2b77c6834dd8eea7cbe88e93acb'
|
||||
|
||||
|
||||
class TestDatasetSentiment(unittest.TestCase):
|
||||
""" TestCases for Sentiment. """
|
||||
|
||||
def test_get_word_dict(self):
|
||||
""" Testcase for get_word_dict. """
|
||||
words_freq_sorted = paddle.dataset.sentiment.get_word_dict()
|
||||
print(words_freq_sorted)
|
||||
self.assertTrue(len(words_freq_sorted) == 39768)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,50 +0,0 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from paddle.text.datasets import *
|
||||
|
||||
|
||||
class TestMovieReviewsTrain(unittest.TestCase):
|
||||
def test_main(self):
|
||||
movie_reviews = MovieReviews(mode='train')
|
||||
self.assertTrue(len(movie_reviews) == 1600)
|
||||
|
||||
# traversal whole dataset may cost a
|
||||
# long time, randomly check 1 sample
|
||||
idx = np.random.randint(0, 1600)
|
||||
data = movie_reviews[idx]
|
||||
self.assertTrue(len(data) == 2)
|
||||
self.assertTrue(len(data[0].shape) == 1)
|
||||
self.assertTrue(int(data[1]) in [0, 1])
|
||||
|
||||
|
||||
class TestMovieReviewsTest(unittest.TestCase):
|
||||
def test_main(self):
|
||||
movie_reviews = MovieReviews(mode='test')
|
||||
self.assertTrue(len(movie_reviews) == 400)
|
||||
|
||||
# traversal whole dataset may cost a
|
||||
# long time, randomly check 1 sample
|
||||
idx = np.random.randint(0, 400)
|
||||
data = movie_reviews[idx]
|
||||
self.assertTrue(len(data) == 2)
|
||||
self.assertTrue(len(data[0].shape) == 1)
|
||||
self.assertTrue(int(data[1]) in [0, 1])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,173 +0,0 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import six
|
||||
import numpy as np
|
||||
import collections
|
||||
import nltk
|
||||
from nltk.corpus import movie_reviews
|
||||
import zipfile
|
||||
from functools import cmp_to_key
|
||||
from itertools import chain
|
||||
|
||||
import paddle
|
||||
from paddle.io import Dataset
|
||||
|
||||
__all__ = ['MovieReviews']
|
||||
|
||||
URL = "https://corpora.bj.bcebos.com/movie_reviews%2Fmovie_reviews.zip"
|
||||
MD5 = '155de2b77c6834dd8eea7cbe88e93acb'
|
||||
|
||||
NUM_TRAINING_INSTANCES = 1600
|
||||
NUM_TOTAL_INSTANCES = 2000
|
||||
|
||||
|
||||
class MovieReviews(Dataset):
|
||||
"""
|
||||
Implementation of `NLTK movie reviews <http://www.nltk.org/nltk_data/>`_ dataset.
|
||||
|
||||
Args:
|
||||
data_file(str): path to data tar file, can be set None if
|
||||
:attr:`download` is True. Default None
|
||||
mode(str): 'train' 'test' mode. Default 'train'.
|
||||
download(bool): whether auto download cifar dataset if
|
||||
:attr:`data_file` unset. Default True.
|
||||
|
||||
Returns:
|
||||
Dataset: instance of movie reviews dataset
|
||||
|
||||
Examples:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import paddle
|
||||
from paddle.text.datasets import MovieReviews
|
||||
|
||||
class SimpleNet(paddle.nn.Layer):
|
||||
def __init__(self):
|
||||
super(SimpleNet, self).__init__()
|
||||
|
||||
def forward(self, word, category):
|
||||
return paddle.sum(word), category
|
||||
|
||||
paddle.disable_static()
|
||||
|
||||
movie_reviews = MovieReviews(mode='train')
|
||||
|
||||
for i in range(10):
|
||||
word_list, category = movie_reviews[i]
|
||||
word_list = paddle.to_tensor(word_list)
|
||||
category = paddle.to_tensor(category)
|
||||
|
||||
model = SimpleNet()
|
||||
word_list, category = model(word_list, category)
|
||||
print(word_list.numpy().shape, category.numpy())
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, mode='train'):
|
||||
assert mode.lower() in ['train', 'test'], \
|
||||
"mode should be 'train', 'test', but got {}".format(mode)
|
||||
self.mode = mode.lower()
|
||||
|
||||
self._download_data_if_not_yet()
|
||||
|
||||
# read dataset into memory
|
||||
self._load_sentiment_data()
|
||||
|
||||
def _get_word_dict(self):
|
||||
"""
|
||||
Sorted the words by the frequency of words which occur in sample
|
||||
:return:
|
||||
words_freq_sorted
|
||||
"""
|
||||
words_freq_sorted = list()
|
||||
word_freq_dict = collections.defaultdict(int)
|
||||
|
||||
for category in movie_reviews.categories():
|
||||
for field in movie_reviews.fileids(category):
|
||||
for words in movie_reviews.words(field):
|
||||
word_freq_dict[words] += 1
|
||||
words_sort_list = list(six.iteritems(word_freq_dict))
|
||||
words_sort_list.sort(key=cmp_to_key(lambda a, b: b[1] - a[1]))
|
||||
for index, word in enumerate(words_sort_list):
|
||||
words_freq_sorted.append((word[0], index))
|
||||
return words_freq_sorted
|
||||
|
||||
def _sort_files(self):
|
||||
"""
|
||||
Sorted the sample for cross reading the sample
|
||||
:return:
|
||||
files_list
|
||||
"""
|
||||
files_list = list()
|
||||
neg_file_list = movie_reviews.fileids('neg')
|
||||
pos_file_list = movie_reviews.fileids('pos')
|
||||
files_list = list(
|
||||
chain.from_iterable(list(zip(neg_file_list, pos_file_list))))
|
||||
return files_list
|
||||
|
||||
def _load_sentiment_data(self):
|
||||
"""
|
||||
Load the data set
|
||||
:return:
|
||||
data_set
|
||||
"""
|
||||
self.data = []
|
||||
words_ids = dict(self._get_word_dict())
|
||||
for sample_file in self._sort_files():
|
||||
words_list = list()
|
||||
category = 0 if 'neg' in sample_file else 1
|
||||
for word in movie_reviews.words(sample_file):
|
||||
words_list.append(words_ids[word.lower()])
|
||||
self.data.append((words_list, category))
|
||||
|
||||
def _download_data_if_not_yet(self):
|
||||
"""
|
||||
Download the data set, if the data set is not download.
|
||||
"""
|
||||
try:
|
||||
# download and extract movie_reviews.zip
|
||||
paddle.dataset.common.download(
|
||||
URL, 'corpora', md5sum=MD5, save_name='movie_reviews.zip')
|
||||
path = os.path.join(paddle.dataset.common.DATA_HOME, 'corpora')
|
||||
filename = os.path.join(path, 'movie_reviews.zip')
|
||||
zip_file = zipfile.ZipFile(filename)
|
||||
zip_file.extractall(path)
|
||||
zip_file.close()
|
||||
# make sure that nltk can find the data
|
||||
if paddle.dataset.common.DATA_HOME not in nltk.data.path:
|
||||
nltk.data.path.append(paddle.dataset.common.DATA_HOME)
|
||||
movie_reviews.categories()
|
||||
except LookupError:
|
||||
print("Downloading movie_reviews data set, please wait.....")
|
||||
nltk.download(
|
||||
'movie_reviews', download_dir=paddle.dataset.common.DATA_HOME)
|
||||
print("Download data set success.....")
|
||||
print("Path is " + nltk.data.find('corpora/movie_reviews').path)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
if self.mode == 'test':
|
||||
idx += NUM_TRAINING_INSTANCES
|
||||
data = self.data[idx]
|
||||
return np.array(data[0]), np.array(data[1])
|
||||
|
||||
def __len__(self):
|
||||
if self.mode == 'train':
|
||||
return NUM_TRAINING_INSTANCES
|
||||
else:
|
||||
return NUM_TOTAL_INSTANCES - NUM_TRAINING_INSTANCES
|
Loading…
Reference in new issue