Merge pull request #11812 from chenwhql/squeeze_op
Add squeeze operator and unit testingguochaorong-patch-1
commit
092d620187
@ -0,0 +1,202 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class SqueezeOpInferShape : public framework::InferShapeBase {
|
||||
public:
|
||||
void operator()(framework::InferShapeContext *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("X"),
|
||||
"Input(X) of SqueezeOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||
"Output(Out) of SqueezeOp should not be null.");
|
||||
|
||||
const auto &x_dims = ctx->GetInputDim("X");
|
||||
// Check input tensor dims (<6) Eigen limit.
|
||||
PADDLE_ENFORCE(x_dims.size() <= 6,
|
||||
"Invalid dimnesions, the rank of Input(X) "
|
||||
"should be in the range of [1, 6] (Eigen limit).");
|
||||
|
||||
const auto &axes = ctx->Attrs().Get<std::vector<int>>("axes");
|
||||
for (int a : axes) {
|
||||
PADDLE_ENFORCE_LT(a, x_dims.size(),
|
||||
"The squeeze axis should be less than input "
|
||||
"tensor's rank.");
|
||||
}
|
||||
|
||||
auto out_dims = GetOutputShape(axes, x_dims);
|
||||
ctx->SetOutputDim("Out", out_dims);
|
||||
if (x_dims[0] == out_dims[0]) {
|
||||
// Only pass LoD when the first dimension of output and Input(X)
|
||||
// are the same.
|
||||
ctx->ShareLoD("X", "Out");
|
||||
}
|
||||
}
|
||||
|
||||
static framework::DDim GetOutputShape(const std::vector<int> squeeze_dims,
|
||||
const framework::DDim &in_dims) {
|
||||
size_t num_squeeze_dims = squeeze_dims.size();
|
||||
int cnt_squeezed_dims = 0;
|
||||
bool should_squeeze[9] = {false};
|
||||
|
||||
// Determines number of dimensions of output tensor after squeeze.
|
||||
// Mark and count the dimensions need to be squeezed
|
||||
if (num_squeeze_dims == 0) {
|
||||
for (int idx = 0; idx < in_dims.size(); ++idx) {
|
||||
if (in_dims[idx] == 1) {
|
||||
should_squeeze[idx] = true;
|
||||
++cnt_squeezed_dims;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (size_t idx = 0; idx < num_squeeze_dims; ++idx) {
|
||||
int current = squeeze_dims[idx] < 0 ? squeeze_dims[idx] + in_dims.size()
|
||||
: squeeze_dims[idx];
|
||||
// Check current index, the upper limit has beed checked in line 36.
|
||||
PADDLE_ENFORCE(current >= 0,
|
||||
"Invalid axis, the negative axis is out of range.");
|
||||
PADDLE_ENFORCE(in_dims[current] == 1,
|
||||
"Invalid axis index, the axis that will be squeezed "
|
||||
"should be equal to 1.");
|
||||
|
||||
if (!(should_squeeze[current])) {
|
||||
++cnt_squeezed_dims;
|
||||
}
|
||||
should_squeeze[current] = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Make output dimensions
|
||||
std::vector<int64_t> output_shape(in_dims.size() - cnt_squeezed_dims, 0);
|
||||
for (int in_idx = 0, out_idx = 0; in_idx < in_dims.size(); ++in_idx) {
|
||||
if (!should_squeeze[in_idx]) {
|
||||
output_shape[out_idx++] = in_dims[in_idx];
|
||||
}
|
||||
}
|
||||
|
||||
return framework::make_ddim(output_shape);
|
||||
}
|
||||
};
|
||||
|
||||
class SqueezeOp : public framework::OperatorBase {
|
||||
public:
|
||||
using OperatorBase::OperatorBase;
|
||||
|
||||
private:
|
||||
void RunImpl(const framework::Scope &scope,
|
||||
const platform::Place &place) const override {
|
||||
auto &axes = Attr<std::vector<int>>("axes");
|
||||
auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
|
||||
auto out_dims = SqueezeOpInferShape::GetOutputShape(axes, x_dims);
|
||||
|
||||
framework::AttributeMap attrs;
|
||||
attrs["shape"] = framework::vectorize2int(out_dims);
|
||||
attrs["inplace"] = Attr<bool>("inplace");
|
||||
// Invoke Reshape Op
|
||||
auto reshape_op = framework::OpRegistry::CreateOp(
|
||||
"reshape", {{"X", {Input("X")}}, {"Shape", {}}},
|
||||
{{"Out", {Output("Out")}}}, attrs);
|
||||
reshape_op->Run(scope, place);
|
||||
}
|
||||
};
|
||||
|
||||
class SqueezeOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X", "(Tensor). The input tensor of squeeze operator.");
|
||||
AddOutput("Out", "(Tensor). The output tensor of squeeze operator.");
|
||||
AddAttr<std::vector<int>>("axes",
|
||||
"(std::vector<int>). List of integers,"
|
||||
" indicating the dimensions to squeeze.")
|
||||
.SetDefault({});
|
||||
AddAttr<bool>("inplace",
|
||||
"(default: false) Squeeze the source tensor's shape without "
|
||||
"memory copy. When Attr(inplace) is set true, the output "
|
||||
"tensor shares memory with Input(X), otherwise, a new output "
|
||||
"tensor is created, and its data are copied from Input(x).")
|
||||
.SetDefault(false);
|
||||
AddComment(R"DOC(
|
||||
Squeeze Operator.
|
||||
|
||||
Remove single-dimensional entries from the shape of a tensor.
|
||||
Takes a parameter axes with a list of axes to squeeze.
|
||||
If axes is not provided, all the single dimensions will be removed from the shape.
|
||||
If an axis is selected with shape entry not equal to one, an error is raised.
|
||||
|
||||
Examples:
|
||||
Case 1:
|
||||
Given
|
||||
X.shape = (1, 3, 1, 5)
|
||||
and
|
||||
axes = [0]
|
||||
we get:
|
||||
Out.shape = (3, 1, 5)
|
||||
|
||||
Case 2:
|
||||
Given
|
||||
X.shape = (1, 3, 1, 5)
|
||||
and
|
||||
axes = []
|
||||
we get:
|
||||
Out.shape = (3, 5)
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class SqueezeGradInferShape : public framework::InferShapeBase {
|
||||
public:
|
||||
void operator()(framework::InferShapeContext *context) const override {
|
||||
context->SetOutputDim(framework::GradVarName("X"),
|
||||
context->GetInputDim("X"));
|
||||
context->ShareLoD("X", framework::GradVarName("X"));
|
||||
}
|
||||
};
|
||||
|
||||
class SqueezeGradOp : public framework::OperatorBase {
|
||||
public:
|
||||
using OperatorBase::OperatorBase;
|
||||
|
||||
private:
|
||||
void RunImpl(const framework::Scope &scope,
|
||||
const platform::Place &place) const override {
|
||||
auto dx_name = Output(framework::GradVarName("X"));
|
||||
auto dout_name = Input(framework::GradVarName("Out"));
|
||||
auto x_dims = scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
|
||||
framework::AttributeMap attrs;
|
||||
attrs["shape"] = framework::vectorize2int(x_dims);
|
||||
attrs["inplace"] = Attr<bool>("inplace");
|
||||
|
||||
auto reshape_op = framework::OpRegistry::CreateOp(
|
||||
"reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
|
||||
attrs);
|
||||
reshape_op->Run(scope, place);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
// Tell linker to use reshape op
|
||||
USE_OP(reshape);
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(squeeze, ops::SqueezeOp, ops::SqueezeOpMaker,
|
||||
ops::SqueezeOpInferShape,
|
||||
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||
REGISTER_OPERATOR(squeeze_grad, ops::SqueezeGradOp, ops::SqueezeGradInferShape);
|
@ -0,0 +1,114 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
# Correct: General.
|
||||
class TestSqueezeOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "squeeze"
|
||||
self.init_test_case()
|
||||
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
|
||||
self.init_attrs()
|
||||
self.outputs = {"Out": self.inputs["X"].reshape(self.new_shape)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(["X"], "Out")
|
||||
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (1, 3, 1, 5)
|
||||
self.axes = (0, 2)
|
||||
self.new_shape = (3, 5)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axes": self.axes, "inplace": False}
|
||||
|
||||
|
||||
# Correct: There is mins axis.
|
||||
class TestSqueezeOp1(TestSqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (1, 3, 1, 5)
|
||||
self.axes = (0, -2)
|
||||
self.new_shape = (3, 5)
|
||||
|
||||
|
||||
# Correct: No axes input.
|
||||
class TestSqueezeOp2(TestSqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (1, 3, 1, 5)
|
||||
self.axes = ()
|
||||
self.new_shape = (3, 5)
|
||||
|
||||
|
||||
# Correct: Just part of axes be squeezed.
|
||||
class TestSqueezeOp3(TestSqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 1, 5, 1, 4, 1)
|
||||
self.axes = (1, -1)
|
||||
self.new_shape = (3, 5, 1, 4)
|
||||
|
||||
|
||||
# Correct: Inplace.
|
||||
class TestSqueezeOpInplace1(TestSqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (1, 3, 1, 5)
|
||||
self.axes = (0, 2)
|
||||
self.new_shape = (3, 5)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axes": self.axes, "inplace": True}
|
||||
|
||||
|
||||
# Correct: Inplace. There is mins axis.
|
||||
class TestSqueezeOpInplace2(TestSqueezeOp):
|
||||
def inti_test_case(self):
|
||||
self.ori_shape = (1, 3, 1, 5)
|
||||
self.axes = (0, -2)
|
||||
self.new_shape = (3, 5)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axes": self.axes, "inplace": True}
|
||||
|
||||
|
||||
# Correct: Inplace. No axes input.
|
||||
class TestSqueezeOpInplace3(TestSqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (1, 3, 1, 5)
|
||||
self.axes = ()
|
||||
self.new_shape = (3, 5)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axes": self.axes, "inplace": True}
|
||||
|
||||
|
||||
# Correct: Inpalce. Just part of axes be squeezed.
|
||||
class TestSqueezeOpInplace4(TestSqueezeOp):
|
||||
def init_test_case(self):
|
||||
self.ori_shape = (3, 1, 5, 1, 4, 1)
|
||||
self.axes = (1, -1)
|
||||
self.new_shape = (3, 5, 1, 4)
|
||||
|
||||
def init_attrs(self):
|
||||
self.attrs = {"axes": self.axes, "inplace": True}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue