|
|
|
@ -24,7 +24,7 @@ import six
|
|
|
|
|
import argparse
|
|
|
|
|
import pickle
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
import time
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
from paddle.fluid import compiler
|
|
|
|
|
import paddle.fluid.dygraph as dygraph
|
|
|
|
@ -35,11 +35,13 @@ RUN_STEP = 5
|
|
|
|
|
DEFAULT_BATCH_SIZE = 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def my_print(log_str):
|
|
|
|
|
def my_print(class_name, log_str):
|
|
|
|
|
localtime = time.asctime(time.localtime(time.time()))
|
|
|
|
|
print_str = localtime + "\t" + class_name + "\t" + log_str
|
|
|
|
|
if six.PY2:
|
|
|
|
|
sys.stderr.write(pickle.dumps(log_str))
|
|
|
|
|
sys.stderr.write(pickle.dumps(print_str))
|
|
|
|
|
else:
|
|
|
|
|
sys.stderr.buffer.write(pickle.dumps(log_str))
|
|
|
|
|
sys.stderr.buffer.write(pickle.dumps(print_str))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestDistRunnerBase(object):
|
|
|
|
@ -90,9 +92,9 @@ class TestDistRunnerBase(object):
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
exe.run(startup_prog)
|
|
|
|
|
my_print("run pserver startup program done.")
|
|
|
|
|
my_print(type(self).__name__, "run pserver startup program done.")
|
|
|
|
|
exe.run(pserver_prog)
|
|
|
|
|
my_print("run pserver main program done.")
|
|
|
|
|
my_print(type(self).__name__, "run pserver main program done.")
|
|
|
|
|
|
|
|
|
|
def run_trainer(self, args):
|
|
|
|
|
self.lr = args.lr
|
|
|
|
@ -107,23 +109,29 @@ class TestDistRunnerBase(object):
|
|
|
|
|
self.get_model(batch_size=args.batch_size)
|
|
|
|
|
|
|
|
|
|
if args.mem_opt:
|
|
|
|
|
my_print("begin to run memory optimize")
|
|
|
|
|
my_print(type(self).__name__, "begin to run memory optimize")
|
|
|
|
|
fluid.memory_optimize(fluid.default_main_program(), skip_grads=True)
|
|
|
|
|
my_print("trainer run memory optimize done.")
|
|
|
|
|
my_print(type(self).__name__, "trainer run memory optimize done.")
|
|
|
|
|
if args.update_method == "pserver":
|
|
|
|
|
my_print("begin to run transpile on trainer with pserver mode")
|
|
|
|
|
my_print(
|
|
|
|
|
type(self).__name__,
|
|
|
|
|
"begin to run transpile on trainer with pserver mode")
|
|
|
|
|
t = self.get_transpiler(args.trainer_id,
|
|
|
|
|
fluid.default_main_program(),
|
|
|
|
|
args.endpoints, args.trainers,
|
|
|
|
|
args.sync_mode, args.dc_asgd)
|
|
|
|
|
trainer_prog = t.get_trainer_program()
|
|
|
|
|
my_print("get trainer program done with pserver mode.")
|
|
|
|
|
my_print(
|
|
|
|
|
type(self).__name__,
|
|
|
|
|
"get trainer program done with pserver mode.")
|
|
|
|
|
elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
|
|
|
|
|
# transpile for nccl2
|
|
|
|
|
config = fluid.DistributeTranspilerConfig()
|
|
|
|
|
config.mode = "nccl2"
|
|
|
|
|
config.nccl_comm_num = args.nccl_comm_num
|
|
|
|
|
my_print("begin to run transpile on trainer with nccl2 mode")
|
|
|
|
|
my_print(
|
|
|
|
|
type(self).__name__,
|
|
|
|
|
"begin to run transpile on trainer with nccl2 mode")
|
|
|
|
|
nccl2_t = fluid.DistributeTranspiler(config=config)
|
|
|
|
|
nccl2_t.transpile(
|
|
|
|
|
args.trainer_id,
|
|
|
|
@ -131,7 +139,9 @@ class TestDistRunnerBase(object):
|
|
|
|
|
startup_program=fluid.default_startup_program(),
|
|
|
|
|
trainers=args.endpoints,
|
|
|
|
|
current_endpoint=args.current_endpoint)
|
|
|
|
|
my_print("get trainer program done. with nccl2 mode")
|
|
|
|
|
my_print(
|
|
|
|
|
type(self).__name__,
|
|
|
|
|
"get trainer program done. with nccl2 mode")
|
|
|
|
|
trainer_prog = fluid.default_main_program()
|
|
|
|
|
else:
|
|
|
|
|
trainer_prog = fluid.default_main_program()
|
|
|
|
@ -144,7 +154,7 @@ class TestDistRunnerBase(object):
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
my_print("run worker startup program done.")
|
|
|
|
|
my_print(type(self).__name__, "run worker startup program done.")
|
|
|
|
|
|
|
|
|
|
exec_strategy = fluid.ExecutionStrategy()
|
|
|
|
|
exec_strategy.num_threads = 1
|
|
|
|
@ -177,12 +187,12 @@ class TestDistRunnerBase(object):
|
|
|
|
|
build_stra.num_trainers = 1
|
|
|
|
|
build_stra.trainer_id = 0
|
|
|
|
|
|
|
|
|
|
my_print("begin to compile with data parallel")
|
|
|
|
|
my_print(type(self).__name__, "begin to compile with data parallel")
|
|
|
|
|
binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
|
|
|
|
|
loss_name=avg_cost.name,
|
|
|
|
|
build_strategy=build_stra,
|
|
|
|
|
exec_strategy=exec_strategy)
|
|
|
|
|
my_print("program compiled with data parallel")
|
|
|
|
|
my_print(type(self).__name__, "program compiled with data parallel")
|
|
|
|
|
|
|
|
|
|
if args.use_cuda and args.update_method == "nccl2":
|
|
|
|
|
# it just for test share_vars_from feature.
|
|
|
|
@ -212,7 +222,7 @@ class TestDistRunnerBase(object):
|
|
|
|
|
else:
|
|
|
|
|
return origin_batch
|
|
|
|
|
|
|
|
|
|
my_print("begin to train on trainer")
|
|
|
|
|
my_print(type(self).__name__, "begin to train on trainer")
|
|
|
|
|
out_losses = []
|
|
|
|
|
for _ in six.moves.xrange(RUN_STEP):
|
|
|
|
|
loss, = exe.run(binary,
|
|
|
|
@ -265,19 +275,23 @@ class TestParallelDyGraphRunnerBase(object):
|
|
|
|
|
strategy.local_rank = args.trainer_id
|
|
|
|
|
strategy.trainer_endpoints = args.endpoints.split(",")
|
|
|
|
|
strategy.current_endpoint = args.current_endpoint
|
|
|
|
|
my_print("begin to prepare context in dygraph with nccl2")
|
|
|
|
|
my_print(
|
|
|
|
|
type(self).__name__,
|
|
|
|
|
"begin to prepare context in dygraph with nccl2")
|
|
|
|
|
dygraph.parallel.prepare_context(strategy)
|
|
|
|
|
model = dygraph.parallel.DataParallel(model, strategy)
|
|
|
|
|
my_print("model built in dygraph")
|
|
|
|
|
my_print(type(self).__name__, "model built in dygraph")
|
|
|
|
|
out_losses = []
|
|
|
|
|
my_print("begin to run dygraph training")
|
|
|
|
|
my_print(type(self).__name__, "begin to run dygraph training")
|
|
|
|
|
for step_id, data in enumerate(train_reader()):
|
|
|
|
|
data = _get_data(data)
|
|
|
|
|
if step_id == RUN_STEP:
|
|
|
|
|
break
|
|
|
|
|
loss = self.run_one_loop(model, opt, data)
|
|
|
|
|
if step_id % 10 == 0:
|
|
|
|
|
my_print("loss at step %d: %f" % (step_id, loss))
|
|
|
|
|
my_print(
|
|
|
|
|
type(self).__name__,
|
|
|
|
|
"loss at step %d: %f" % (step_id, loss))
|
|
|
|
|
out_losses.append(loss.numpy())
|
|
|
|
|
|
|
|
|
|
# FIXME(Yancey1989): scale the loss inplace
|
|
|
|
@ -290,7 +304,7 @@ class TestParallelDyGraphRunnerBase(object):
|
|
|
|
|
|
|
|
|
|
opt.minimize(loss)
|
|
|
|
|
model.clear_gradients()
|
|
|
|
|
my_print(pickle.dumps(out_losses))
|
|
|
|
|
my_print(type(self).__name__, pickle.dumps(out_losses))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def runtime_main(test_class):
|
|
|
|
@ -395,7 +409,8 @@ class TestDistBase(unittest.TestCase):
|
|
|
|
|
with closing(socket.socket(socket.AF_INET,
|
|
|
|
|
socket.SOCK_STREAM)) as s:
|
|
|
|
|
s.bind(('', 0))
|
|
|
|
|
my_print("socket name: %s" % s.getsockname()[1])
|
|
|
|
|
my_print(
|
|
|
|
|
type(self).__name__, "socket name: %s" % s.getsockname()[1])
|
|
|
|
|
return s.getsockname()[1]
|
|
|
|
|
|
|
|
|
|
while True:
|
|
|
|
@ -426,13 +441,13 @@ class TestDistBase(unittest.TestCase):
|
|
|
|
|
ps0_pipe = open("/tmp/ps0_err.log", "wb")
|
|
|
|
|
ps1_pipe = open("/tmp/ps1_err.log", "wb")
|
|
|
|
|
|
|
|
|
|
my_print("going to start pserver process 0")
|
|
|
|
|
my_print(type(self).__name__, "going to start pserver process 0")
|
|
|
|
|
ps0_proc = subprocess.Popen(
|
|
|
|
|
ps0_cmd.strip().split(" "),
|
|
|
|
|
stdout=subprocess.PIPE,
|
|
|
|
|
stderr=ps0_pipe,
|
|
|
|
|
env=required_envs)
|
|
|
|
|
my_print("going to start pserver process 1")
|
|
|
|
|
my_print(type(self).__name__, "going to start pserver process 1")
|
|
|
|
|
ps1_proc = subprocess.Popen(
|
|
|
|
|
ps1_cmd.strip().split(" "),
|
|
|
|
|
stdout=subprocess.PIPE,
|
|
|
|
@ -538,13 +553,13 @@ class TestDistBase(unittest.TestCase):
|
|
|
|
|
tr0_pipe = open("/tmp/tr0_err.log", "wb")
|
|
|
|
|
tr1_pipe = open("/tmp/tr1_err.log", "wb")
|
|
|
|
|
|
|
|
|
|
my_print("going to start trainer process 0")
|
|
|
|
|
my_print(type(self).__name__, "going to start trainer process 0")
|
|
|
|
|
tr0_proc = subprocess.Popen(
|
|
|
|
|
tr0_cmd.strip().split(" "),
|
|
|
|
|
stdout=subprocess.PIPE,
|
|
|
|
|
stderr=tr0_pipe,
|
|
|
|
|
env=env0)
|
|
|
|
|
my_print("going to start trainer process 1")
|
|
|
|
|
my_print(type(self).__name__, "going to start trainer process 1")
|
|
|
|
|
tr1_proc = subprocess.Popen(
|
|
|
|
|
tr1_cmd.strip().split(" "),
|
|
|
|
|
stdout=subprocess.PIPE,
|
|
|
|
@ -662,13 +677,13 @@ class TestDistBase(unittest.TestCase):
|
|
|
|
|
tr0_pipe = open("/tmp/tr0_err.log", "wb")
|
|
|
|
|
tr1_pipe = open("/tmp/tr1_err.log", "wb")
|
|
|
|
|
|
|
|
|
|
my_print("going to start process 0 with nccl2")
|
|
|
|
|
my_print(type(self).__name__, "going to start process 0 with nccl2")
|
|
|
|
|
tr0_proc = subprocess.Popen(
|
|
|
|
|
tr0_cmd.strip().split(" "),
|
|
|
|
|
stdout=subprocess.PIPE,
|
|
|
|
|
stderr=tr0_pipe,
|
|
|
|
|
env=env0)
|
|
|
|
|
my_print("going to start process 1 with nccl2")
|
|
|
|
|
my_print(type(self).__name__, "going to start process 1 with nccl2")
|
|
|
|
|
tr1_proc = subprocess.Popen(
|
|
|
|
|
tr1_cmd.strip().split(" "),
|
|
|
|
|
stdout=subprocess.PIPE,
|
|
|
|
|