Merge pull request #2479 from emailweixu/mixed_input_rnn
RecurrentGroup with mixed input sequence typesgangliao-patch-1
commit
09f34c4b1f
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,85 @@
|
||||
# edit-mode: -*- python -*-
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
######################## data source ################################
|
||||
define_py_data_sources2(
|
||||
train_list='gserver/tests/Sequence/dummy.list',
|
||||
test_list=None,
|
||||
module='rnn_data_provider',
|
||||
obj='process_mixed')
|
||||
|
||||
settings(batch_size=2, learning_rate=0.01)
|
||||
######################## network configure ################################
|
||||
dict_dim = 10
|
||||
word_dim = 2
|
||||
hidden_dim = 2
|
||||
label_dim = 2
|
||||
|
||||
data1 = data_layer(name="word1", size=dict_dim)
|
||||
data2 = data_layer(name="word2", size=dict_dim)
|
||||
label = data_layer(name="label", size=label_dim)
|
||||
|
||||
encoding = embedding_layer(input=data2, size=word_dim)
|
||||
|
||||
subseq = embedding_layer(input=data1, size=word_dim)
|
||||
seq = embedding_layer(input=data2, size=word_dim)
|
||||
nonseq = embedding_layer(input=label, size=word_dim)
|
||||
|
||||
|
||||
# This hierarchical RNN is designed to be equivalent to the simple RNN in
|
||||
# sequence_rnn_multi_unequalength_inputs.conf
|
||||
def outer_step(subseq, seq, nonseq, encoding):
|
||||
outer_mem = memory(name="outer_rnn_state", size=hidden_dim)
|
||||
|
||||
def inner_step(subseq, seq, nonseq):
|
||||
inner_mem = memory(
|
||||
name="inner_rnn_state", size=hidden_dim, boot_layer=outer_mem)
|
||||
|
||||
out = fc_layer(
|
||||
input=[subseq, seq, nonseq, inner_mem],
|
||||
size=hidden_dim,
|
||||
act=TanhActivation(),
|
||||
bias_attr=True,
|
||||
name='inner_rnn_state')
|
||||
return out
|
||||
|
||||
decoder = recurrent_group(
|
||||
step=inner_step, name='inner', input=[subseq, seq, nonseq])
|
||||
last = last_seq(name="outer_rnn_state", input=decoder)
|
||||
context = simple_attention(
|
||||
encoded_sequence=encoding, encoded_proj=encoding, decoder_state=last)
|
||||
return context
|
||||
|
||||
|
||||
out = recurrent_group(
|
||||
name="outer",
|
||||
step=outer_step,
|
||||
input=[
|
||||
subseq, expand_layer(
|
||||
seq, expand_as=subseq,
|
||||
expand_level=ExpandLevel.FROM_SEQUENCE), expand_layer(
|
||||
nonseq,
|
||||
expand_as=subseq,
|
||||
expand_level=ExpandLevel.FROM_NO_SEQUENCE),
|
||||
StaticInput(encoding)
|
||||
])
|
||||
|
||||
rep = last_seq(input=out)
|
||||
prob = fc_layer(
|
||||
size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True)
|
||||
|
||||
outputs(classification_cost(input=prob, label=label))
|
@ -0,0 +1,79 @@
|
||||
# edit-mode: -*- python -*-
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
######################## data source ################################
|
||||
define_py_data_sources2(
|
||||
train_list='gserver/tests/Sequence/dummy.list',
|
||||
test_list=None,
|
||||
module='rnn_data_provider',
|
||||
obj='process_mixed')
|
||||
|
||||
settings(batch_size=2, learning_rate=0.01)
|
||||
######################## network configure ################################
|
||||
dict_dim = 10
|
||||
word_dim = 2
|
||||
hidden_dim = 2
|
||||
label_dim = 2
|
||||
|
||||
data1 = data_layer(name="word1", size=dict_dim)
|
||||
data2 = data_layer(name="word2", size=dict_dim)
|
||||
label = data_layer(name="label", size=label_dim)
|
||||
|
||||
encoding = embedding_layer(input=data2, size=word_dim)
|
||||
|
||||
|
||||
# This hierarchical RNN is designed to be equivalent to the simple RNN in
|
||||
# sequence_rnn_multi_unequalength_inputs.conf
|
||||
def outer_step(subseq, seq, nonseq, encoding):
|
||||
outer_mem = memory(name="outer_rnn_state", size=hidden_dim)
|
||||
|
||||
def inner_step(data1, data2, label):
|
||||
inner_mem = memory(
|
||||
name="inner_rnn_state", size=hidden_dim, boot_layer=outer_mem)
|
||||
|
||||
subseq = embedding_layer(input=data1, size=word_dim)
|
||||
seq = embedding_layer(input=data2, size=word_dim)
|
||||
nonseq = embedding_layer(input=label, size=word_dim)
|
||||
|
||||
print_layer(input=[data1, seq, label, inner_mem])
|
||||
out = fc_layer(
|
||||
input=[subseq, seq, nonseq, inner_mem],
|
||||
size=hidden_dim,
|
||||
act=TanhActivation(),
|
||||
bias_attr=True,
|
||||
name='inner_rnn_state')
|
||||
return out
|
||||
|
||||
decoder = recurrent_group(
|
||||
step=inner_step, name='inner',
|
||||
input=[subseq, StaticInput(seq), nonseq])
|
||||
last = last_seq(name="outer_rnn_state", input=decoder)
|
||||
context = simple_attention(
|
||||
encoded_sequence=encoding, encoded_proj=encoding, decoder_state=last)
|
||||
return context
|
||||
|
||||
|
||||
out = recurrent_group(
|
||||
name="outer",
|
||||
step=outer_step,
|
||||
input=[data1, data2, StaticInput(label), StaticInput(encoding)])
|
||||
|
||||
rep = last_seq(input=out)
|
||||
prob = fc_layer(
|
||||
size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True)
|
||||
|
||||
outputs(classification_cost(input=prob, label=label))
|
Loading…
Reference in new issue