Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop
commit
0a0f194836
@ -1,53 +1,65 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <memory>
|
||||
#include <random>
|
||||
#include "paddle/platform/dynload/curand.h"
|
||||
#include "paddle/platform/gpu_info.h"
|
||||
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/iterator/counting_iterator.h>
|
||||
#include <thrust/random.h>
|
||||
#include <thrust/transform.h>
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/framework/operator.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename T>
|
||||
class GaussianRandomKernel : public framework::OpKernel {
|
||||
struct GaussianGenerator {
|
||||
T mean_, std_;
|
||||
unsigned int seed_;
|
||||
|
||||
__host__ __device__ GaussianGenerator(T mean, T std, int seed)
|
||||
: mean_(mean), std_(std), seed_(seed) {}
|
||||
|
||||
__host__ __device__ T operator()(const unsigned int n) const {
|
||||
thrust::minstd_rand rng;
|
||||
rng.seed(seed_);
|
||||
thrust::normal_distribution<T> dist(mean_, std_);
|
||||
rng.discard(n);
|
||||
return dist(rng);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class GPUGaussianRandomKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
float mean = context.op_.GetAttr<float>("mean");
|
||||
float std = context.op_.GetAttr<float>("std");
|
||||
auto* tensor = context.Output<framework::Tensor>(0);
|
||||
auto* tensor = context.Output<framework::Tensor>("Out");
|
||||
T* data = tensor->mutable_data<T>(context.GetPlace());
|
||||
|
||||
int seed = context.op_.GetAttr<int>("seed");
|
||||
unsigned int seed =
|
||||
static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
|
||||
if (seed == 0) {
|
||||
std::random_device rd;
|
||||
seed = rd();
|
||||
}
|
||||
curandGenerator_t g;
|
||||
PADDLE_ENFORCE(platform::dynload::curandCreateGenerator(
|
||||
&g, CURAND_RNG_PSEUDO_DEFAULT));
|
||||
PADDLE_ENFORCE(
|
||||
platform::dynload::curandSetPseudoRandomGeneratorSeed(g, seed));
|
||||
platform::dynload::curandGenerateNormal(
|
||||
g, data, framework::product(tensor->dims()), mean, std);
|
||||
T mean = static_cast<T>(context.op_.GetAttr<float>("mean"));
|
||||
T std = static_cast<T>(context.op_.GetAttr<float>("std"));
|
||||
thrust::counting_iterator<unsigned int> index_sequence_begin(0);
|
||||
ssize_t N = framework::product(tensor->dims());
|
||||
thrust::transform(index_sequence_begin, index_sequence_begin + N,
|
||||
thrust::device_ptr<T>(data),
|
||||
GaussianGenerator<T>(mean, std, seed));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(gaussian_random, ops::GaussianRandomKernel<float>);
|
||||
REGISTER_OP_GPU_KERNEL(gaussian_random,
|
||||
paddle::operators::GPUGaussianRandomKernel<float>);
|
||||
|
Loading…
Reference in new issue