|
|
|
@ -15,33 +15,10 @@ import cPickle
|
|
|
|
|
import itertools
|
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
|
|
__all__ = ['CIFAR10', 'CIFAR100', 'train_creator', 'test_creator']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __download_file__(filename, url, md5):
|
|
|
|
|
def __file_ok__():
|
|
|
|
|
if not os.path.exists(filename):
|
|
|
|
|
return False
|
|
|
|
|
md5_hash = hashlib.md5()
|
|
|
|
|
with open(filename, 'rb') as f:
|
|
|
|
|
for chunk in iter(lambda: f.read(4096), b""):
|
|
|
|
|
md5_hash.update(chunk)
|
|
|
|
|
|
|
|
|
|
return md5_hash.hexdigest() == md5
|
|
|
|
|
|
|
|
|
|
while not __file_ok__():
|
|
|
|
|
response = urllib2.urlopen(url)
|
|
|
|
|
with open(filename, mode='wb') as of:
|
|
|
|
|
shutil.copyfileobj(fsrc=response, fdst=of)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __read_one_batch__(batch):
|
|
|
|
|
data = batch['data']
|
|
|
|
|
labels = batch.get('labels', batch.get('fine_labels', None))
|
|
|
|
|
assert labels is not None
|
|
|
|
|
for sample, label in itertools.izip(data, labels):
|
|
|
|
|
yield (sample / 255.0).astype(numpy.float32), int(label)
|
|
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
|
'cifar_100_train_creator', 'cifar_100_test_creator', 'train_creator',
|
|
|
|
|
'test_creator'
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
CIFAR10_URL = 'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
|
|
|
|
|
CIFAR10_MD5 = 'c58f30108f718f92721af3b95e74349a'
|
|
|
|
@ -49,125 +26,84 @@ CIFAR100_URL = 'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
|
|
|
|
|
CIFAR100_MD5 = 'eb9058c3a382ffc7106e4002c42a8d85'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CIFAR(object):
|
|
|
|
|
"""
|
|
|
|
|
CIFAR dataset reader. The base class for CIFAR-10 and CIFAR-100
|
|
|
|
|
|
|
|
|
|
:param url: Download url.
|
|
|
|
|
:param md5: File md5sum
|
|
|
|
|
:param meta_filename: Meta file name in package.
|
|
|
|
|
:param train_filename: Train file name in package.
|
|
|
|
|
:param test_filename: Test file name in package.
|
|
|
|
|
"""
|
|
|
|
|
def __read_batch__(filename, sub_name):
|
|
|
|
|
def reader():
|
|
|
|
|
def __read_one_batch_impl__(batch):
|
|
|
|
|
data = batch['data']
|
|
|
|
|
labels = batch.get('labels', batch.get('fine_labels', None))
|
|
|
|
|
assert labels is not None
|
|
|
|
|
for sample, label in itertools.izip(data, labels):
|
|
|
|
|
yield (sample / 255.0).astype(numpy.float32), int(label)
|
|
|
|
|
|
|
|
|
|
def __init__(self, url, md5, meta_filename, train_filename, test_filename):
|
|
|
|
|
filename = os.path.split(url)[-1]
|
|
|
|
|
assert DATA_HOME is not None
|
|
|
|
|
filepath = os.path.join(DATA_HOME, md5)
|
|
|
|
|
if not os.path.exists(filepath):
|
|
|
|
|
os.makedirs(filepath)
|
|
|
|
|
|
|
|
|
|
self.__full_file__ = os.path.join(filepath, filename)
|
|
|
|
|
self.__meta_filename__ = meta_filename
|
|
|
|
|
self.__train_filename__ = train_filename
|
|
|
|
|
self.__test_filename__ = test_filename
|
|
|
|
|
__download_file__(filename=self.__full_file__, url=url, md5=md5)
|
|
|
|
|
|
|
|
|
|
def labels(self):
|
|
|
|
|
"""
|
|
|
|
|
labels get all dataset label in order.
|
|
|
|
|
:return: a list of label.
|
|
|
|
|
:rtype: list[string]
|
|
|
|
|
"""
|
|
|
|
|
with tarfile.open(self.__full_file__, mode='r') as f:
|
|
|
|
|
name = [
|
|
|
|
|
each_item.name for each_item in f
|
|
|
|
|
if self.__meta_filename__ in each_item.name
|
|
|
|
|
][0]
|
|
|
|
|
meta_f = f.extractfile(name)
|
|
|
|
|
meta = cPickle.load(meta_f)
|
|
|
|
|
for key in meta:
|
|
|
|
|
if 'label' in key:
|
|
|
|
|
return meta[key]
|
|
|
|
|
else:
|
|
|
|
|
raise RuntimeError("Unexpected branch.")
|
|
|
|
|
|
|
|
|
|
def train(self):
|
|
|
|
|
"""
|
|
|
|
|
Train Reader
|
|
|
|
|
"""
|
|
|
|
|
return self.__read_batch__(self.__train_filename__)
|
|
|
|
|
|
|
|
|
|
def test(self):
|
|
|
|
|
"""
|
|
|
|
|
Test Reader
|
|
|
|
|
"""
|
|
|
|
|
return self.__read_batch__(self.__test_filename__)
|
|
|
|
|
|
|
|
|
|
def __read_batch__(self, sub_name):
|
|
|
|
|
with tarfile.open(self.__full_file__, mode='r') as f:
|
|
|
|
|
with tarfile.open(filename, mode='r') as f:
|
|
|
|
|
names = (each_item.name for each_item in f
|
|
|
|
|
if sub_name in each_item.name)
|
|
|
|
|
|
|
|
|
|
for name in names:
|
|
|
|
|
batch = cPickle.load(f.extractfile(name))
|
|
|
|
|
for item in __read_one_batch__(batch):
|
|
|
|
|
for item in __read_one_batch_impl__(batch):
|
|
|
|
|
yield item
|
|
|
|
|
|
|
|
|
|
return reader
|
|
|
|
|
|
|
|
|
|
class CIFAR10(CIFAR):
|
|
|
|
|
"""
|
|
|
|
|
CIFAR-10 dataset, images are classified in 10 classes.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(CIFAR10, self).__init__(
|
|
|
|
|
CIFAR10_URL,
|
|
|
|
|
CIFAR10_MD5,
|
|
|
|
|
meta_filename='batches.meta',
|
|
|
|
|
train_filename='data_batch',
|
|
|
|
|
test_filename='test_batch')
|
|
|
|
|
def download(url, md5):
|
|
|
|
|
filename = os.path.split(url)[-1]
|
|
|
|
|
assert DATA_HOME is not None
|
|
|
|
|
filepath = os.path.join(DATA_HOME, md5)
|
|
|
|
|
if not os.path.exists(filepath):
|
|
|
|
|
os.makedirs(filepath)
|
|
|
|
|
__full_file__ = os.path.join(filepath, filename)
|
|
|
|
|
|
|
|
|
|
def __file_ok__():
|
|
|
|
|
if not os.path.exists(__full_file__):
|
|
|
|
|
return False
|
|
|
|
|
md5_hash = hashlib.md5()
|
|
|
|
|
with open(__full_file__, 'rb') as f:
|
|
|
|
|
for chunk in iter(lambda: f.read(4096), b""):
|
|
|
|
|
md5_hash.update(chunk)
|
|
|
|
|
|
|
|
|
|
return md5_hash.hexdigest() == md5
|
|
|
|
|
|
|
|
|
|
while not __file_ok__():
|
|
|
|
|
response = urllib2.urlopen(url)
|
|
|
|
|
with open(__full_file__, mode='wb') as of:
|
|
|
|
|
shutil.copyfileobj(fsrc=response, fdst=of)
|
|
|
|
|
return __full_file__
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cifar_100_train_creator():
|
|
|
|
|
fn = download(url=CIFAR100_URL, md5=CIFAR100_MD5)
|
|
|
|
|
return __read_batch__(fn, 'train')
|
|
|
|
|
|
|
|
|
|
class CIFAR100(CIFAR):
|
|
|
|
|
"""
|
|
|
|
|
CIFAR-100 dataset, images are classified in 100 classes.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(CIFAR100, self).__init__(
|
|
|
|
|
CIFAR100_URL,
|
|
|
|
|
CIFAR100_MD5,
|
|
|
|
|
meta_filename='meta',
|
|
|
|
|
train_filename='train',
|
|
|
|
|
test_filename='test')
|
|
|
|
|
def cifar_100_test_creator():
|
|
|
|
|
fn = download(url=CIFAR100_URL, md5=CIFAR100_MD5)
|
|
|
|
|
return __read_batch__(fn, 'test')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train_creator():
|
|
|
|
|
"""
|
|
|
|
|
Default train reader creator. Use CIFAR-10 dataset.
|
|
|
|
|
"""
|
|
|
|
|
cifar = CIFAR10()
|
|
|
|
|
return cifar.train
|
|
|
|
|
fn = download(url=CIFAR10_URL, md5=CIFAR10_MD5)
|
|
|
|
|
return __read_batch__(fn, 'data_batch')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_creator():
|
|
|
|
|
"""
|
|
|
|
|
Default test reader creator. Use CIFAR-10 dataset.
|
|
|
|
|
"""
|
|
|
|
|
cifar = CIFAR10()
|
|
|
|
|
return cifar.test
|
|
|
|
|
fn = download(url=CIFAR10_URL, md5=CIFAR10_MD5)
|
|
|
|
|
return __read_batch__(fn, 'test_batch')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def unittest(label_count=100):
|
|
|
|
|
cifar = globals()["CIFAR%d" % label_count]()
|
|
|
|
|
assert len(cifar.labels()) == label_count
|
|
|
|
|
for _ in cifar.test():
|
|
|
|
|
def unittest():
|
|
|
|
|
for _ in train_creator()():
|
|
|
|
|
pass
|
|
|
|
|
for _ in cifar.train():
|
|
|
|
|
for _ in test_creator()():
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest(10)
|
|
|
|
|
unittest(100)
|
|
|
|
|
unittest()
|
|
|
|
|