commit
						0bd6476f67
					
				@ -0,0 +1,181 @@
 | 
				
			||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
//
 | 
				
			||||
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
// you may not use this file except in compliance with the License.
 | 
				
			||||
// You may obtain a copy of the License at
 | 
				
			||||
//
 | 
				
			||||
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
//
 | 
				
			||||
// Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
// See the License for the specific language governing permissions and
 | 
				
			||||
// limitations under the License.
 | 
				
			||||
 | 
				
			||||
#include "paddle/fluid/inference/analysis/analyzer.h"
 | 
				
			||||
 | 
				
			||||
#include <google/protobuf/text_format.h>
 | 
				
			||||
#include <gtest/gtest.h>
 | 
				
			||||
#include <thread>  // NOLINT
 | 
				
			||||
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
 | 
				
			||||
#include "paddle/fluid/framework/ir/pass.h"
 | 
				
			||||
#include "paddle/fluid/inference/analysis/ut_helper.h"
 | 
				
			||||
#include "paddle/fluid/inference/api/analysis_predictor.h"
 | 
				
			||||
#include "paddle/fluid/inference/api/helper.h"
 | 
				
			||||
#include "paddle/fluid/inference/api/paddle_inference_api.h"
 | 
				
			||||
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
 | 
				
			||||
 | 
				
			||||
DEFINE_string(infer_model, "", "model path");
 | 
				
			||||
DEFINE_string(infer_data, "", "data path");
 | 
				
			||||
DEFINE_int32(batch_size, 1, "batch size.");
 | 
				
			||||
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
 | 
				
			||||
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
 | 
				
			||||
 | 
				
			||||
namespace paddle {
 | 
				
			||||
namespace inference {
 | 
				
			||||
 | 
				
			||||
using namespace framework;  // NOLINT
 | 
				
			||||
 | 
				
			||||
struct DataRecord {
 | 
				
			||||
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
 | 
				
			||||
  std::vector<size_t> lod;
 | 
				
			||||
  std::vector<std::vector<float>> rnn_link_data;
 | 
				
			||||
  std::vector<float> result_data;
 | 
				
			||||
  size_t batch_iter{0};
 | 
				
			||||
  size_t batch_size{1};
 | 
				
			||||
  DataRecord() = default;
 | 
				
			||||
  explicit DataRecord(const std::string &path, int batch_size = 1)
 | 
				
			||||
      : batch_size(batch_size) {
 | 
				
			||||
    Load(path);
 | 
				
			||||
  }
 | 
				
			||||
  DataRecord NextBatch() {
 | 
				
			||||
    DataRecord data;
 | 
				
			||||
    size_t batch_end = batch_iter + batch_size;
 | 
				
			||||
    // NOTE skip the final batch, if no enough data is provided.
 | 
				
			||||
    if (batch_end <= link_step_data_all.size()) {
 | 
				
			||||
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
 | 
				
			||||
                                     link_step_data_all.begin() + batch_end);
 | 
				
			||||
      // Prepare LoDs
 | 
				
			||||
      data.lod.push_back(0);
 | 
				
			||||
      CHECK(!data.link_step_data_all.empty()) << "empty";
 | 
				
			||||
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
 | 
				
			||||
        for (const auto &d : data.link_step_data_all[j]) {
 | 
				
			||||
          data.rnn_link_data.push_back(d);
 | 
				
			||||
          // calculate lod
 | 
				
			||||
          data.lod.push_back(data.lod.back() + 11);
 | 
				
			||||
        }
 | 
				
			||||
      }
 | 
				
			||||
    }
 | 
				
			||||
    batch_iter += batch_size;
 | 
				
			||||
    return data;
 | 
				
			||||
  }
 | 
				
			||||
  void Load(const std::string &path) {
 | 
				
			||||
    std::ifstream file(path);
 | 
				
			||||
    std::string line;
 | 
				
			||||
    int num_lines = 0;
 | 
				
			||||
    while (std::getline(file, line)) {
 | 
				
			||||
      num_lines++;
 | 
				
			||||
      std::vector<std::string> data;
 | 
				
			||||
      split(line, ':', &data);
 | 
				
			||||
      if (num_lines % 2) {  // feature
 | 
				
			||||
        std::vector<std::string> feature_data;
 | 
				
			||||
        split(data[1], ' ', &feature_data);
 | 
				
			||||
        std::vector<std::vector<float>> link_step_data;
 | 
				
			||||
        int feature_count = 1;
 | 
				
			||||
        std::vector<float> feature;
 | 
				
			||||
        for (auto &step_data : feature_data) {
 | 
				
			||||
          std::vector<float> tmp;
 | 
				
			||||
          split_to_float(step_data, ',', &tmp);
 | 
				
			||||
          feature.insert(feature.end(), tmp.begin(), tmp.end());
 | 
				
			||||
          if (feature_count % 11 == 0) {  // each sample has 11 features
 | 
				
			||||
            link_step_data.push_back(feature);
 | 
				
			||||
            feature.clear();
 | 
				
			||||
          }
 | 
				
			||||
          feature_count++;
 | 
				
			||||
        }
 | 
				
			||||
        link_step_data_all.push_back(std::move(link_step_data));
 | 
				
			||||
      } else {  // result
 | 
				
			||||
        std::vector<float> tmp;
 | 
				
			||||
        split_to_float(data[1], ',', &tmp);
 | 
				
			||||
        result_data.insert(result_data.end(), tmp.begin(), tmp.end());
 | 
				
			||||
      }
 | 
				
			||||
    }
 | 
				
			||||
  }
 | 
				
			||||
};
 | 
				
			||||
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
 | 
				
			||||
                   int batch_size) {
 | 
				
			||||
  PaddleTensor feed_tensor;
 | 
				
			||||
  feed_tensor.name = "feed";
 | 
				
			||||
  auto one_batch = data->NextBatch();
 | 
				
			||||
  int token_size = one_batch.rnn_link_data.size();
 | 
				
			||||
  // each token has 11 features, each feature's dim is 54.
 | 
				
			||||
  std::vector<int> rnn_link_data_shape({token_size * 11, 54});
 | 
				
			||||
  feed_tensor.shape = rnn_link_data_shape;
 | 
				
			||||
  feed_tensor.lod.assign({one_batch.lod});
 | 
				
			||||
  feed_tensor.dtype = PaddleDType::FLOAT32;
 | 
				
			||||
  TensorAssignData<float>(&feed_tensor, one_batch.rnn_link_data);
 | 
				
			||||
  // Set inputs.
 | 
				
			||||
  input_slots->assign({feed_tensor});
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
void CompareResult(const std::vector<PaddleTensor> &outputs,
 | 
				
			||||
                   const std::vector<float> &base_result) {
 | 
				
			||||
  PADDLE_ENFORCE_GT(outputs.size(), 0);
 | 
				
			||||
  for (size_t i = 0; i < outputs.size(); i++) {
 | 
				
			||||
    auto &out = outputs[i];
 | 
				
			||||
    size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
 | 
				
			||||
                                  [](int a, int b) { return a * b; });
 | 
				
			||||
    PADDLE_ENFORCE_GT(size, 0);
 | 
				
			||||
    float *data = static_cast<float *>(out.data.data());
 | 
				
			||||
    for (size_t i = 0; i < size; i++) {
 | 
				
			||||
      EXPECT_NEAR(data[i], base_result[i], 1e-3);
 | 
				
			||||
    }
 | 
				
			||||
  }
 | 
				
			||||
}
 | 
				
			||||
// Test with a really complicate model.
 | 
				
			||||
void TestRNN2Prediction() {
 | 
				
			||||
  AnalysisConfig config;
 | 
				
			||||
  config.prog_file = FLAGS_infer_model + "/__model__";
 | 
				
			||||
  config.param_file = FLAGS_infer_model + "/param";
 | 
				
			||||
  config.use_gpu = false;
 | 
				
			||||
  config.device = 0;
 | 
				
			||||
  config.specify_input_name = true;
 | 
				
			||||
  config.enable_ir_optim = true;
 | 
				
			||||
  PADDLE_ENFORCE(config.ir_mode ==
 | 
				
			||||
                 AnalysisConfig::IrPassMode::kExclude);  // default
 | 
				
			||||
 | 
				
			||||
  int batch_size = FLAGS_batch_size;
 | 
				
			||||
  int num_times = FLAGS_repeat;
 | 
				
			||||
 | 
				
			||||
  auto base_predictor =
 | 
				
			||||
      CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
 | 
				
			||||
  auto predictor =
 | 
				
			||||
      CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(
 | 
				
			||||
          config);
 | 
				
			||||
  std::vector<PaddleTensor> input_slots;
 | 
				
			||||
  DataRecord data(FLAGS_infer_data, batch_size);
 | 
				
			||||
  PrepareInputs(&input_slots, &data, batch_size);
 | 
				
			||||
  std::vector<PaddleTensor> outputs, base_outputs;
 | 
				
			||||
 | 
				
			||||
  Timer timer1;
 | 
				
			||||
  timer1.tic();
 | 
				
			||||
  for (int i = 0; i < num_times; i++) {
 | 
				
			||||
    base_predictor->Run(input_slots, &base_outputs);
 | 
				
			||||
  }
 | 
				
			||||
  PrintTime(batch_size, num_times, 1, 0, timer1.toc() / num_times);
 | 
				
			||||
 | 
				
			||||
  Timer timer2;
 | 
				
			||||
  timer2.tic();
 | 
				
			||||
  for (int i = 0; i < num_times; i++) {
 | 
				
			||||
    predictor->Run(input_slots, &outputs);
 | 
				
			||||
  }
 | 
				
			||||
  PrintTime(batch_size, num_times, 1, 0, timer2.toc() / num_times);
 | 
				
			||||
 | 
				
			||||
  CompareResult(base_outputs, data.result_data);
 | 
				
			||||
  CompareResult(outputs, data.result_data);
 | 
				
			||||
}
 | 
				
			||||
 | 
				
			||||
TEST(Analyzer, rnn2) { TestRNN2Prediction(); }
 | 
				
			||||
 | 
				
			||||
}  // namespace inference
 | 
				
			||||
}  // namespace paddle
 | 
				
			||||
@ -0,0 +1,50 @@
 | 
				
			||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | 
				
			||||
#
 | 
				
			||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||
# you may not use this file except in compliance with the License.
 | 
				
			||||
# You may obtain a copy of the License at
 | 
				
			||||
#
 | 
				
			||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||
#
 | 
				
			||||
# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||
# See the License for the specific language governing permissions and
 | 
				
			||||
# limitations under the License.
 | 
				
			||||
 | 
				
			||||
import sys
 | 
				
			||||
import time
 | 
				
			||||
import socket
 | 
				
			||||
from contextlib import closing
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
def wait_server_ready(endpoints):
 | 
				
			||||
    """
 | 
				
			||||
    Wait until parameter servers are ready, use connext_ex to detect
 | 
				
			||||
    port readiness.
 | 
				
			||||
 | 
				
			||||
    Args:
 | 
				
			||||
        endpoints (list): endpoints string list, like:
 | 
				
			||||
                         ["127.0.0.1:8080", "127.0.0.1:8081"]
 | 
				
			||||
 | 
				
			||||
    Examples:
 | 
				
			||||
        .. code-block:: python
 | 
				
			||||
 | 
				
			||||
           wait_server_ready(["127.0.0.1:8080", "127.0.0.1:8081"])
 | 
				
			||||
    """
 | 
				
			||||
    while True:
 | 
				
			||||
        all_ok = True
 | 
				
			||||
        for ep in endpoints:
 | 
				
			||||
            ip_port = ep.split(":")
 | 
				
			||||
            with closing(socket.socket(socket.AF_INET,
 | 
				
			||||
                                       socket.SOCK_STREAM)) as sock:
 | 
				
			||||
                sock.settimeout(2)
 | 
				
			||||
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
 | 
				
			||||
                if result != 0:
 | 
				
			||||
                    all_ok = False
 | 
				
			||||
        if not all_ok:
 | 
				
			||||
            sys.stderr.write("pserver not ready, wait 3 sec to retry...\n")
 | 
				
			||||
            sys.stderr.flush()
 | 
				
			||||
            time.sleep(3)
 | 
				
			||||
        else:
 | 
				
			||||
            break
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue