|
|
|
@ -19,6 +19,21 @@ from paddle.trainer_config_helpers.default_decorators import wrap_name_default
|
|
|
|
|
import collections
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_network(*outputs):
|
|
|
|
|
"""
|
|
|
|
|
parse all output layers and then generate a model config proto.
|
|
|
|
|
:param outputs:
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __real_func__():
|
|
|
|
|
context = dict()
|
|
|
|
|
real_output = [each.to_proto(context=context) for each in outputs]
|
|
|
|
|
conf_helps.outputs(real_output)
|
|
|
|
|
|
|
|
|
|
return __parse__(__real_func__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Layer(object):
|
|
|
|
|
def __init__(self, name, parent_layer):
|
|
|
|
|
assert isinstance(parent_layer, dict)
|
|
|
|
@ -49,22 +64,13 @@ class Layer(object):
|
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_network(*outputs):
|
|
|
|
|
def __real_func__():
|
|
|
|
|
context = dict()
|
|
|
|
|
real_output = [each.to_proto(context=context) for each in outputs]
|
|
|
|
|
conf_helps.outputs(real_output)
|
|
|
|
|
|
|
|
|
|
return __parse__(__real_func__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __convert__(method_name, name_prefix, parent_names):
|
|
|
|
|
def __convert_to_v2__(method_name, name_prefix, parent_names):
|
|
|
|
|
if name_prefix is not None:
|
|
|
|
|
wrapper = wrap_name_default(name_prefix=name_prefix)
|
|
|
|
|
else:
|
|
|
|
|
wrapper = None
|
|
|
|
|
|
|
|
|
|
class __Impl__(Layer):
|
|
|
|
|
class V2LayerImpl(Layer):
|
|
|
|
|
def __init__(self, name=None, **kwargs):
|
|
|
|
|
parent_layers = dict()
|
|
|
|
|
other_kwargs = dict()
|
|
|
|
@ -75,7 +81,7 @@ def __convert__(method_name, name_prefix, parent_names):
|
|
|
|
|
if key not in parent_names:
|
|
|
|
|
other_kwargs[key] = kwargs[key]
|
|
|
|
|
|
|
|
|
|
super(__Impl__, self).__init__(name, parent_layers)
|
|
|
|
|
super(V2LayerImpl, self).__init__(name, parent_layers)
|
|
|
|
|
self.__other_kwargs__ = other_kwargs
|
|
|
|
|
|
|
|
|
|
if wrapper is not None:
|
|
|
|
@ -89,24 +95,38 @@ def __convert__(method_name, name_prefix, parent_names):
|
|
|
|
|
args[each] = self.__other_kwargs__[each]
|
|
|
|
|
return getattr(conf_helps, method_name)(name=self.name, **args)
|
|
|
|
|
|
|
|
|
|
return __Impl__
|
|
|
|
|
return V2LayerImpl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data_layer = __convert__('data_layer', None, [])
|
|
|
|
|
fc_layer = __convert__('fc_layer', name_prefix='fc', parent_names=['input'])
|
|
|
|
|
classification_cost = __convert__(
|
|
|
|
|
data = __convert_to_v2__('data_layer', None, [])
|
|
|
|
|
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
|
|
|
|
|
max_id = __convert_to_v2__(
|
|
|
|
|
'maxid_layer', name_prefix='maxid_layer', parent_names=['input'])
|
|
|
|
|
classification_cost = __convert_to_v2__(
|
|
|
|
|
'classification_cost',
|
|
|
|
|
name_prefix='classification_cost',
|
|
|
|
|
parent_names=['input', 'label'])
|
|
|
|
|
cross_entropy_cost = __convert_to_v2__(
|
|
|
|
|
'cross_entropy',
|
|
|
|
|
name_prefix='cross_entropy',
|
|
|
|
|
parent_names=['input', 'label'])
|
|
|
|
|
|
|
|
|
|
__all__ = ['data_layer', 'fc_layer', 'classification_cost', 'parse_network']
|
|
|
|
|
__all__ = [
|
|
|
|
|
'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
|
|
|
|
|
'cross_entropy_cost'
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
data = data_layer(name='pixel', size=784)
|
|
|
|
|
hidden = fc_layer(input=data, size=100, act=conf_helps.SigmoidActivation())
|
|
|
|
|
predict = fc_layer(
|
|
|
|
|
input=[hidden, data], size=10, act=conf_helps.SoftmaxActivation())
|
|
|
|
|
cost = classification_cost(
|
|
|
|
|
input=predict, label=data_layer(
|
|
|
|
|
name='label', size=10))
|
|
|
|
|
print parse_network(cost)
|
|
|
|
|
pixel = data(name='pixel', size=784)
|
|
|
|
|
label = data(name='label', size=10)
|
|
|
|
|
hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation())
|
|
|
|
|
inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation())
|
|
|
|
|
maxid = max_id(input=inference)
|
|
|
|
|
cost1 = classification_cost(input=inference, label=label)
|
|
|
|
|
cost2 = cross_entropy_cost(input=inference, label=label)
|
|
|
|
|
|
|
|
|
|
print parse_network(cost1)
|
|
|
|
|
print parse_network(cost2)
|
|
|
|
|
print parse_network(cost1, cost2)
|
|
|
|
|
print parse_network(cost2)
|
|
|
|
|
print parse_network(inference, maxid)
|