|
|
|
@ -12,11 +12,112 @@
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
from ..fluid.data import data
|
|
|
|
|
import paddle
|
|
|
|
|
import numpy as np
|
|
|
|
|
import six
|
|
|
|
|
|
|
|
|
|
from paddle.fluid import core
|
|
|
|
|
from paddle.fluid.layer_helper import LayerHelper
|
|
|
|
|
from paddle.fluid.data_feeder import check_dtype, check_type
|
|
|
|
|
|
|
|
|
|
__all__ = ['data', 'InputSpec']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def data(name, shape, dtype=None, lod_level=0):
|
|
|
|
|
"""
|
|
|
|
|
**Data Layer**
|
|
|
|
|
|
|
|
|
|
This function creates a variable on the global block. The global variable
|
|
|
|
|
can be accessed by all the following operators in the graph. The variable
|
|
|
|
|
is a placeholder that could be fed with input, such as Executor can feed
|
|
|
|
|
input into the variable. When `dtype` is None, the dtype
|
|
|
|
|
will get from the global dtype by `paddle.get_default_dtype()`.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
name (str): The name/alias of the variable, see :ref:`api_guide_Name`
|
|
|
|
|
for more details.
|
|
|
|
|
shape (list|tuple): List|Tuple of integers declaring the shape. You can
|
|
|
|
|
set "None" or -1 at a dimension to indicate the dimension can be of any
|
|
|
|
|
size. For example, it is useful to set changeable batch size as "None" or -1.
|
|
|
|
|
dtype (np.dtype|str, optional): The type of the data. Supported
|
|
|
|
|
dtype: bool, float16, float32, float64, int8, int16, int32, int64,
|
|
|
|
|
uint8. Default: None. When `dtype` is not set, the dtype will get
|
|
|
|
|
from the global dtype by `paddle.get_default_dtype()`.
|
|
|
|
|
lod_level (int, optional): The LoD level of the LoDTensor. Usually users
|
|
|
|
|
don't have to set this value. For more details about when and how to
|
|
|
|
|
use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0.
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Variable: The global variable that gives access to the data.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
|
|
# Creates a variable with fixed size [3, 2, 1]
|
|
|
|
|
# User can only feed data of the same shape to x
|
|
|
|
|
# the dtype is not set, so it will set "float32" by
|
|
|
|
|
# paddle.get_default_dtype(). You can use paddle.get_default_dtype() to
|
|
|
|
|
# change the global dtype
|
|
|
|
|
x = paddle.static.data(name='x', shape=[3, 2, 1])
|
|
|
|
|
|
|
|
|
|
# Creates a variable with changeable batch size -1.
|
|
|
|
|
# Users can feed data of any batch size into y,
|
|
|
|
|
# but size of each data sample has to be [2, 1]
|
|
|
|
|
y = paddle.static.data(name='y', shape=[-1, 2, 1], dtype='float32')
|
|
|
|
|
|
|
|
|
|
z = x + y
|
|
|
|
|
|
|
|
|
|
# In this example, we will feed x and y with np-ndarray "1"
|
|
|
|
|
# and fetch z, like implementing "1 + 1 = 2" in PaddlePaddle
|
|
|
|
|
feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace())
|
|
|
|
|
out = exe.run(fluid.default_main_program(),
|
|
|
|
|
feed={
|
|
|
|
|
'x': feed_data,
|
|
|
|
|
'y': feed_data
|
|
|
|
|
},
|
|
|
|
|
fetch_list=[z.name])
|
|
|
|
|
|
|
|
|
|
# np-ndarray of shape=[3, 2, 1], dtype=float32, whose elements are 2
|
|
|
|
|
print(out)
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
helper = LayerHelper('data', **locals())
|
|
|
|
|
check_type(name, 'name', (six.binary_type, six.text_type), 'data')
|
|
|
|
|
check_type(shape, 'shape', (list, tuple), 'data')
|
|
|
|
|
|
|
|
|
|
shape = list(shape)
|
|
|
|
|
for i in six.moves.range(len(shape)):
|
|
|
|
|
if shape[i] is None:
|
|
|
|
|
shape[i] = -1
|
|
|
|
|
|
|
|
|
|
if dtype:
|
|
|
|
|
return helper.create_global_variable(
|
|
|
|
|
name=name,
|
|
|
|
|
shape=shape,
|
|
|
|
|
dtype=dtype,
|
|
|
|
|
type=core.VarDesc.VarType.LOD_TENSOR,
|
|
|
|
|
stop_gradient=True,
|
|
|
|
|
lod_level=lod_level,
|
|
|
|
|
is_data=True,
|
|
|
|
|
need_check_feed=True)
|
|
|
|
|
else:
|
|
|
|
|
return helper.create_global_variable(
|
|
|
|
|
name=name,
|
|
|
|
|
shape=shape,
|
|
|
|
|
dtype=paddle.get_default_dtype(),
|
|
|
|
|
type=core.VarDesc.VarType.LOD_TENSOR,
|
|
|
|
|
stop_gradient=True,
|
|
|
|
|
lod_level=lod_level,
|
|
|
|
|
is_data=True,
|
|
|
|
|
need_check_feed=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class InputSpec(object):
|
|
|
|
|
"""
|
|
|
|
|
Define input specification of the model.
|
|
|
|
@ -28,7 +129,7 @@ class InputSpec(object):
|
|
|
|
|
declaring the shape. You can set "None" or -1 at a dimension
|
|
|
|
|
to indicate the dimension can be of any size. For example,
|
|
|
|
|
it is useful to set changeable batch size as "None" or -1.
|
|
|
|
|
dtype (np.dtype|VarType|str, optional): The type of the data. Supported
|
|
|
|
|
dtype (np.dtype|str, optional): The type of the data. Supported
|
|
|
|
|
dtype: bool, float16, float32, float64, int8, int16, int32, int64,
|
|
|
|
|
uint8. Default: float32.
|
|
|
|
|
|
|
|
|
|