|
|
|
@ -23,8 +23,8 @@ from op_test import OpTest
|
|
|
|
|
from paddle.fluid import core
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def l2loss(x, y):
|
|
|
|
|
return 0.5 * (y - x) * (y - x)
|
|
|
|
|
def l1loss(x, y):
|
|
|
|
|
return abs(x - y)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sce(x, label):
|
|
|
|
@ -66,7 +66,7 @@ def batch_xywh_box_iou(box1, box2):
|
|
|
|
|
return inter_area / union
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def YOLOv3Loss(x, gtbox, gtlabel, attrs):
|
|
|
|
|
def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
|
|
|
|
|
n, c, h, w = x.shape
|
|
|
|
|
b = gtbox.shape[1]
|
|
|
|
|
anchors = attrs['anchors']
|
|
|
|
@ -75,21 +75,21 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
|
|
|
|
|
mask_num = len(anchor_mask)
|
|
|
|
|
class_num = attrs["class_num"]
|
|
|
|
|
ignore_thresh = attrs['ignore_thresh']
|
|
|
|
|
downsample = attrs['downsample']
|
|
|
|
|
input_size = downsample * h
|
|
|
|
|
downsample_ratio = attrs['downsample_ratio']
|
|
|
|
|
use_label_smooth = attrs['use_label_smooth']
|
|
|
|
|
input_size = downsample_ratio * h
|
|
|
|
|
x = x.reshape((n, mask_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
|
|
|
|
|
loss = np.zeros((n)).astype('float32')
|
|
|
|
|
|
|
|
|
|
label_pos = 1.0 - 1.0 / class_num if use_label_smooth else 1.0
|
|
|
|
|
label_neg = 1.0 / class_num if use_label_smooth else 0.0
|
|
|
|
|
|
|
|
|
|
pred_box = x[:, :, :, :, :4].copy()
|
|
|
|
|
grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
|
|
|
|
|
grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
|
|
|
|
|
pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w
|
|
|
|
|
pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h
|
|
|
|
|
|
|
|
|
|
x[:, :, :, :, 5:] = np.where(x[:, :, :, :, 5:] < -0.5, x[:, :, :, :, 5:],
|
|
|
|
|
np.ones_like(x[:, :, :, :, 5:]) * 1.0 /
|
|
|
|
|
class_num)
|
|
|
|
|
|
|
|
|
|
mask_anchors = []
|
|
|
|
|
for m in anchor_mask:
|
|
|
|
|
mask_anchors.append((anchors[2 * m], anchors[2 * m + 1]))
|
|
|
|
@ -138,21 +138,22 @@ def YOLOv3Loss(x, gtbox, gtlabel, attrs):
|
|
|
|
|
ty = gtbox[i, j, 1] * w - gj
|
|
|
|
|
tw = np.log(gtbox[i, j, 2] * input_size / mask_anchors[an_idx][0])
|
|
|
|
|
th = np.log(gtbox[i, j, 3] * input_size / mask_anchors[an_idx][1])
|
|
|
|
|
scale = (2.0 - gtbox[i, j, 2] * gtbox[i, j, 3])
|
|
|
|
|
scale = (2.0 - gtbox[i, j, 2] * gtbox[i, j, 3]) * gtscore[i, j]
|
|
|
|
|
loss[i] += sce(x[i, an_idx, gj, gi, 0], tx) * scale
|
|
|
|
|
loss[i] += sce(x[i, an_idx, gj, gi, 1], ty) * scale
|
|
|
|
|
loss[i] += l2loss(x[i, an_idx, gj, gi, 2], tw) * scale
|
|
|
|
|
loss[i] += l2loss(x[i, an_idx, gj, gi, 3], th) * scale
|
|
|
|
|
loss[i] += l1loss(x[i, an_idx, gj, gi, 2], tw) * scale
|
|
|
|
|
loss[i] += l1loss(x[i, an_idx, gj, gi, 3], th) * scale
|
|
|
|
|
|
|
|
|
|
objness[i, an_idx * h * w + gj * w + gi] = 1.0
|
|
|
|
|
objness[i, an_idx * h * w + gj * w + gi] = gtscore[i, j]
|
|
|
|
|
|
|
|
|
|
for label_idx in range(class_num):
|
|
|
|
|
loss[i] += sce(x[i, an_idx, gj, gi, 5 + label_idx],
|
|
|
|
|
float(label_idx == gtlabel[i, j]))
|
|
|
|
|
loss[i] += sce(x[i, an_idx, gj, gi, 5 + label_idx], label_pos
|
|
|
|
|
if label_idx == gtlabel[i, j] else
|
|
|
|
|
label_neg) * gtscore[i, j]
|
|
|
|
|
|
|
|
|
|
for j in range(mask_num * h * w):
|
|
|
|
|
if objness[i, j] > 0:
|
|
|
|
|
loss[i] += sce(pred_obj[i, j], 1.0)
|
|
|
|
|
loss[i] += sce(pred_obj[i, j], 1.0) * objness[i, j]
|
|
|
|
|
elif objness[i, j] == 0:
|
|
|
|
|
loss[i] += sce(pred_obj[i, j], 0.0)
|
|
|
|
|
|
|
|
|
@ -167,6 +168,7 @@ class TestYolov3LossOp(OpTest):
|
|
|
|
|
x = logit(np.random.uniform(0, 1, self.x_shape).astype('float32'))
|
|
|
|
|
gtbox = np.random.random(size=self.gtbox_shape).astype('float32')
|
|
|
|
|
gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2])
|
|
|
|
|
gtscore = np.random.random(self.gtbox_shape[:2]).astype('float32')
|
|
|
|
|
gtmask = np.random.randint(0, 2, self.gtbox_shape[:2])
|
|
|
|
|
gtbox = gtbox * gtmask[:, :, np.newaxis]
|
|
|
|
|
gtlabel = gtlabel * gtmask
|
|
|
|
@ -176,15 +178,18 @@ class TestYolov3LossOp(OpTest):
|
|
|
|
|
"anchor_mask": self.anchor_mask,
|
|
|
|
|
"class_num": self.class_num,
|
|
|
|
|
"ignore_thresh": self.ignore_thresh,
|
|
|
|
|
"downsample": self.downsample,
|
|
|
|
|
"downsample_ratio": self.downsample_ratio,
|
|
|
|
|
"use_label_smooth": self.use_label_smooth,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
self.inputs = {
|
|
|
|
|
'X': x,
|
|
|
|
|
'GTBox': gtbox.astype('float32'),
|
|
|
|
|
'GTLabel': gtlabel.astype('int32'),
|
|
|
|
|
'GTScore': gtscore.astype('float32')
|
|
|
|
|
}
|
|
|
|
|
loss, objness, gt_matches = YOLOv3Loss(x, gtbox, gtlabel, self.attrs)
|
|
|
|
|
loss, objness, gt_matches = YOLOv3Loss(x, gtbox, gtlabel, gtscore,
|
|
|
|
|
self.attrs)
|
|
|
|
|
self.outputs = {
|
|
|
|
|
'Loss': loss,
|
|
|
|
|
'ObjectnessMask': objness,
|
|
|
|
@ -193,24 +198,33 @@ class TestYolov3LossOp(OpTest):
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
place = core.CPUPlace()
|
|
|
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
self.check_output_with_place(place, atol=2e-3)
|
|
|
|
|
|
|
|
|
|
def test_check_grad_ignore_gtbox(self):
|
|
|
|
|
place = core.CPUPlace()
|
|
|
|
|
self.check_grad_with_place(
|
|
|
|
|
place, ['X'],
|
|
|
|
|
'Loss',
|
|
|
|
|
no_grad_set=set(["GTBox", "GTLabel"]),
|
|
|
|
|
max_relative_error=0.3)
|
|
|
|
|
no_grad_set=set(["GTBox", "GTLabel", "GTScore"]),
|
|
|
|
|
max_relative_error=0.2)
|
|
|
|
|
|
|
|
|
|
def initTestCase(self):
|
|
|
|
|
self.anchors = [10, 13, 16, 30, 33, 23]
|
|
|
|
|
self.anchor_mask = [1, 2]
|
|
|
|
|
self.anchors = [
|
|
|
|
|
10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198,
|
|
|
|
|
373, 326
|
|
|
|
|
]
|
|
|
|
|
self.anchor_mask = [0, 1, 2]
|
|
|
|
|
self.class_num = 5
|
|
|
|
|
self.ignore_thresh = 0.5
|
|
|
|
|
self.downsample = 32
|
|
|
|
|
self.downsample_ratio = 32
|
|
|
|
|
self.x_shape = (3, len(self.anchor_mask) * (5 + self.class_num), 5, 5)
|
|
|
|
|
self.gtbox_shape = (3, 5, 4)
|
|
|
|
|
self.use_label_smooth = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestYolov3LossWithoutLabelSmooth(TestYolov3LossOp):
|
|
|
|
|
def set_label_smooth(self):
|
|
|
|
|
self.use_label_smooth = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|